18 research outputs found

    Targeting IκappaB kinases for cancer therapy

    Get PDF
    The inhibitory kappa B kinases (IKKs) and IKK related kinases are crucial regulators of the pro-inflammatory transcription factor, nuclear factor kappa B (NF-κB). The dysregulation in the activities of these kinases has been reported in several cancer types. These kinases are known to regulate survival, proliferation, invasion, angiogenesis, and metastasis of cancer cells. Thus, IKK and IKK related kinases have emerged as an attractive target for the development of cancer therapeutics. Several IKK inhibitors have been developed, few of which have advanced to the clinic. These inhibitors target IKK either directly or indirectly by modulating the activities of other signaling molecules. Some inhibitors suppress IKK activity by disrupting the protein-protein interaction in the IKK complex. The inhibition of IKK has also been shown to enhance the efficacy of conventional chemotherapeutic agents. Because IKK and NF-κB are the key components of innate immunity, suppressing IKK is associated with the risk of immune suppression. Furthermore, IKK inhibitors may hit other signaling molecules and thus may produce off-target effects. Recent studies suggest that multiple cytoplasmic and nuclear proteins distinct from NF-κB and inhibitory κB are also substrates of IKK. In this review, we discuss the utility of IKK inhibitors for cancer therapy. The limitations associated with the intervention of IKK are also discussed

    Tumor Microenvironment Enriches the Stemness Features: The Architectural Event of Therapy Resistance and Metastasis

    Get PDF
    Cancer divergence has many facets other than being considered a genetic term. It is a tremendous challenge to understand the metastasis and therapy response in cancer biology; however, it postulates the opportunity to explore the possible mechanism in the surrounding tumor environment. Most deadly solid malignancies are distinctly characterized by their tumor microenvironment (TME). TME consists of stromal components such as immune, inflammatory, endothelial, adipocytes, and fibroblast cells. Cancer stem cells (CSCs) or cancer stem-like cells are a small sub-set of the population within cancer cells believed to be a responsible player in the self-renewal, metastasis, and therapy response of cancer cells. The correlation between TME and CSCs remains an enigma in understanding the events of metastasis and therapy resistance in cancer biology. Recent evidence suggests that TME dictates the CSCs maintenance to arbitrate cancer progression and metastasis. The immune, inflammatory, endothelial, adipocyte, and fibroblast cells in the TME release growth factors, cytokines, chemokines, microRNAs, and exosomes that provide cues for the gain and maintenance of CSC features. These intricate cross-talks are fueled to evolve into aggressive, invasive, migratory phenotypes for cancer development. In this review, we have abridged the recent developments in the role of the TME factors in CSC maintenance and how these events influence the transition of tumor progression to further translate into metastasis and therapy resistance in cancer

    Elevated PAF1-RAD52 Axis Confers Chemoresistance to Human Cancers

    Get PDF
    Cisplatin- and gemcitabine-based chemotherapeutics represent a mainstay of cancer therapy for most solid tumors; however, resistance limits their curative potential. Here, we identify RNA polymerase II-associated factor 1 (PAF1) as a common driver of cisplatin and gemcitabine resistance in human cancers (ovarian, lung, and pancreas). Mechanistically, cisplatin- and gemcitabine-resistant cells show enhanced DNA repair, which is inhibited by PAF1 silencing. We demonstrate an increased interaction of PAF1 with RAD52 in resistant cells. Targeting the PAF1 and RAD52 axis combined with cisplatin or gemcitabine strongly diminishes the survival potential of resistant cells. Overall, this study shows clinical evidence that the expression of PAF1 contributes to chemotherapy resistance and worse clinical outcome for lethal cancers

    Natural Compound Resveratrol Attenuates TNF-Alpha-Induced Vascular Dysfunction in Mice and Human Endothelial Cells: The Involvement of the NF-κB Signaling Pathway

    Full text link
    Resveratrol, a natural compound in grapes and red wine, has drawn attention due to potential cardiovascular-related health benefits. However, its effect on vascular inflammation at physiologically achievable concentrations is largely unknown. In this study, resveratrol in concentrations as low as 1 μm suppressed TNF-α-induced monocyte adhesion to human EA.hy926 endothelial cells (ECs), a key event in the initiation and development of atherosclerosis. Low concentrations of resveratrol (0.25–2 μm) also significantly attenuated TNF-α-stimulated mRNA expressions of MCP-1/CCL2 and ICAM-1, which are vital mediators of EC-monocyte adhesion molecules and cytokines for cardiovascular plaque formation. Additionally, resveratrol diminished TNF-α-induced IκB-α degradation and subsequent nuclear translocation of NF-κB p65 in ECs. In the animal study, resveratrol supplementation in diet significantly diminished TNF-α-induced increases in circulating levels of adhesion molecules and cytokines, monocyte adhesion to mouse aortic ECs, F4/80-positive macrophages and VCAM-1 expression in mice aortas and restored the disruption in aortic elastin fiber caused by TNF-α treatment. The animal study also confirmed that resveratrol blocks the activation of NF-κB In Vivo. In conclusion, resveratrol at physiologically achievable concentrations displayed protective effects against TNF-α-induced vascular endothelial inflammation in vitro and In Vivo. The ability of resveratrol in reducing inflammation may be associated with its role as a down-regulator of the NF-κB pathway

    Copper(I) and Nickel(II) Complexes with 1:1 Vs. 1:2 Coordination of Ferrocenyl Hydrazone Ligands: Do the Geometry and Composition of Complexes Affect DNA Binding/Cleavage, Protein Binding, Antioxidant and Cytotoxic Activities?

    Full text link
    A new series of geometrically different complexes containing ferrocenyl hydrazone ligands were synthesised by reacting suitable precursor complex [MCl2(PPh3)(2)] with the ligands HL1 or HL2 (where M = Cu(II) or Ni(II); HL1 = [Cp2Fe(CH=N-NH -CO-C6H5)] (1) and HL2 = [Cp2Fe(CH=N-NH-CO-C5H4N)]) (2). The new complexes of the composition [Cu(L-1)(PPh3)(2)], (3) [Cu(L-2)(PPh3)(2)] (4), [Ni(L-1)(2)] (5) and [Ni(L-2)(2)] (6) were characterised by various spectral studies. Among them, complexes 3 and 5 characterised by single crystal X-ray diffraction showed a distorted tetrahedral structure for the former with 1 : 1 metal-ligand stoichiometry, but a distorted square planar geometry with 1 : 2 metal-ligand stoichiometry in the case of the latter. Systematic biological investigations like DNA binding, DNA cleavage, protein binding, free radical scavenging and cytotoxicity activities were carried out using all the synthesised compounds and the results obtained were explained on the basis of structure-activity relationships. The binding constant (K-b) values of the synthesised compounds are found to be in the order of magnitude 10(3)-10(5) M-1 and also they exhibit significant cleavage of supercoiled (SC) pUC19 DNA in the presence of H2O2 as co-oxidant. The conformational changes of bovine serum albumin (BSA) upon binding with the above complexes were also studied. In addition, concentration dependent free radical scavenging potential of all the synthesised compounds (1-6) was also carried out under in vitro conditions. Assays on the cytotoxicity of the above complexes against HeLa and A431 tumor cells and NIH 3T3 normal cells were also carried out.University Grants Commission, New Delhi, IndiaDepartment of Science and Technology, Government of India, New DelhiRobert A. Welch Foundation F-0003Chemistr

    Effect of Substitution and Planarity of the Ligand On DNA/BSA interaction, Free Radical Scavenging and Cytotoxicity of Diamagnetic Ni(II) Complexes: A Systematic Investigation

    Full text link
    Four new bivalent nickel hydrazone complexes have been synthesised from the reactions of [NiCl2(PPh3)(2)] with H2L {L = dianion of the hydrazones derived from the condensation of salicylaldehyde or o-hydroxy acetophenone with p-toluic acid hydrazide (H2L1) (1), (H2L2) (2) and o-hydroxy acetophenone or o-hydroxy naphthaldehyde with benzhydrazide (H2L3) (3) and (H2L4) (4)} and formulated as [Ni(L-1)(PPh3)] (5), [Ni(L-2)(PPh3)] (6), [Ni(L-3)(PPh3)] (7) and [Ni(L-4)(PPh3)] (8). Structural characterization of complexes 5-8 were accomplished by using various physico-chemical techniques. In order to study the influence of substitution in the ligand and its planarity on the biological activity of complexes 5-8 containing them, suitable hydrazone ligands 1-4 have been selected in this study. Single crystal diffraction data of complexes 5, 7 and 8 proved the geometry of the complexes to be distorted square planar with a 1 : 1 ratio between the metal ion and the coordinated hydrazones. To provide more insight on the mode of action of complexes 5-8 under biological conditions, additional experiments involving their interaction with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) were monitored by UV-visible and fluorescence titrations respectively. Further, the ligands 1-4 and corresponding nickel(II) chelates 5-8 have been tested for their scavenging effect towards OH and O-2(-) radicals. The effect of complexes 5-8 to arrest the growth of HeLa and Hep-2 tumour cell lines has been studied along with the cell viability against the non-cancerous NIH 3T3 cells under in vitro conditions.University Grants Commission, New Delhi, IndiaRobert A. Welch Foundation F-0003Chemistr

    Protection of HepG2 cells against acrolein toxicity by 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide via glutathione-mediated mechanism

    Full text link
    Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity

    Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IΚBα/NF-κB signaling pathway

    Full text link
    Vascular inflammation plays a significant role in the pathogenesis of atherosclerosis. Luteolin, a naturally-occurring flavanoid, present in many medicinal plants as well as in some commonly consumed fruits and vegetables has received wide attention for its potential to improve vascular function in vitro. However, its effect in vivo and the molecular mechanism of luteolin at physiological concentrations remain unclear. Here, we report that luteolin as low as 0.5 μM significantly inhibited TNF-α-induced adhesion of monocytes to human EA.hy 926 endothelial cells, a key event in triggering vascular inflammation. Luteolin potently suppressed TNF-α-induced expression of the chemokine monocyte chemotactic protein-1 (MCP-1) and adhesion molecules ICAM-1 and VCAM-1, key mediators involved in enhancing endothelial cell-monocyte interaction. Furthermore, luteolin inhibited TNF-α-induced NF-κB transcriptional activity, IκBα degradation, expression of IκB kinase ß (IKKß), and subsequent NF-κB p65 nuclear translocation in endothelial cells, suggesting that luteolin can inhibit inflammation by suppressing NF-κB signaling. In an animal study, C57BL/6 mice were fed a diet containing 0% or 0.6% luteolin for three weeks and luteolin supplementation greatly suppressed TNF-α-induced increases in circulating levels of MCP-1/JE, CXCL1/KC, and sICAM-1 in C57BL/6 mice. Consistently, dietary intake of luteolin significantly reduced TNF-α-stimulated adhesion of monocytes to aortic endothelial cells ex vivo. Histology shows that luteolin treatment prevented the eruption of endothelial lining in the intima layer of the aorta and preserved elastin fibers’ delicate organization as shown by Verhoeff-van Gieson staining. Immunohistochemistry studies further show that luteolin treatment also reduced VCAM-1 and monocyte-derived F4/80-positive macrophages in the aorta of TNF-α-treated mice. In conclusion, luteolin protects against TNF-α-induced vascular inflammation, in both in vitro and in vivo models. This anti-inflammatory effect of luteolin may be mediated via inhibition of the NF-κB-mediated pathway
    corecore