61 research outputs found

    Quantum Machine Learning for Remote Sensing: Exploring potential and challenges

    Full text link
    The industry of quantum technologies is rapidly expanding, offering promising opportunities for various scientific domains. Among these emerging technologies, Quantum Machine Learning (QML) has attracted considerable attention due to its potential to revolutionize data processing and analysis. In this paper, we investigate the application of QML in the field of remote sensing. It is believed that QML can provide valuable insights for analysis of data from space. We delve into the common beliefs surrounding the quantum advantage in QML for remote sensing and highlight the open challenges that need to be addressed. To shed light on the challenges, we conduct a study focused on the problem of kernel value concentration, a phenomenon that adversely affects the runtime of quantum computers. Our findings indicate that while this issue negatively impacts quantum computer performance, it does not entirely negate the potential quantum advantage in QML for remote sensing.Comment: 2 pages, 2 figures. Presented at the Big Data from Space 2023 conferenc

    Cloud Detection in Multispectral Satellite Images Using Support Vector Machines With Quantum Kernels

    Full text link
    Support vector machines (SVMs) are a well-established classifier effectively deployed in an array of pattern recognition and classification tasks. In this work, we consider extending classic SVMs with quantum kernels and applying them to satellite data analysis. The design and implementation of SVMs with quantum kernels (hybrid SVMs) is presented. It consists of the Quantum Kernel Estimation (QKE) procedure combined with a classic SVM training routine. The pixel data are mapped to the Hilbert space using ZZ-feature maps acting on the parameterized ansatz state. The parameters are optimized to maximize the kernel target alignment. We approach the problem of cloud detection in satellite image data, which is one of the pivotal steps in both on-the-ground and on-board satellite image analysis processing chains. The experiments performed over the benchmark Landsat-8 multispectral dataset revealed that the simulated hybrid SVM successfully classifies satellite images with accuracy on par with classic SVMs.Comment: Prepared for IGARSS 2023 Proceedings, 4 pages, 2 figure
    • …
    corecore