116 research outputs found
Application of Microfluidics in Stem Cell Culture
In this chapter, we review the recent developments, including our studies on the microfabricated devices applicable to stem cell culture. We will focus on the application of pluripotent stem cells including embryonic stem cells and induced pluripotent stem cells. In the first section, we provide a background on microfluidic devices, including their fabrication technology, characteristics, and the advantages of their application in stem cell culture. The second section outlines the use of micropatterning technology in stem cell culture. The use of microwell array technology in stem cell culture is explored in the third section. In the fourth section, we discuss the use of the microfluidic perfusion culture system for stem cell culture, and the last section is a summary of the current state of the art and perspectives of microfluidic technologies in stem cell culture
Increased nerve growth factor expression in the synovial tissues of patients with rotator cuff tears
BACKGROUND: Rotator cuff tears (RCTs) are often associated with severe shoulder pain. Non-steroidal anti-inflammatory drugs, not recommended for long-term use, do not effectively manage RCT-induced pain, resulting in reduced quality of life. To improve management, a better understanding of the fundamental properties of RCT pain is needed. Here, we aimed to compare the expression levels of nerve growth factor (NGF) and cyclooxygenase-2 (COX-2) mRNA in the synovial tissues of patients with RCT-induced pain and patients with non-painful recurrent shoulder dislocation (RSD). METHODS: The study included 32 patients with RCT who underwent arthroscopic rotator cuff repair and 28 patients with non-painful RSD who underwent arthroscopic Bankart repair. Synovial tissue samples were harvested from subacromial bursa and rotator interval of RCT patients and from the rotator interval of RSD patients. Samples were analyzed quantitatively expression levels for NGF and COX2 mRNA and NGF protein. RESULTS: NGF mRNA and protein levels were significantly higher in the rotator interval of RCT patients than in the rotator interval of RSD patients (p = 0.0017, p = 0.012, respectively), while COX2 mRNA levels did not differ significantly between the two patient groups. In RCT patients, COX2 mRNA was more highly expressed in the rotator interval than in the subacromial bursa (p = 0.038), whereas the mRNA and protein levels of NGF did not differ between the two tissues. The expression of NGF mRNA in the synovium of the rotator interval was significantly correlated with the numeric rating scale of pain (ρ = 0.38, p = 0.004). CONCLUSION: NGF mRNA and protein levels were elevated in patients with painful RCT compared with those in patients with non-painful RSD, whereas COX-2 levels were comparable in the two patient groups. These findings provide insights into novel potential strategies for clinical management of RCT
Changes of Sympathetic Activity in Patient with Chronic Atrial Fibrillation and Severe Congestive Heart Failure Treated with Biventricular Pacing
The patient was a 64-year-old man with chronic atrial fibrillation with bradycardia. Left ventricular ejection fraction was 34%. He was treated with biventricular pacing. Heart failure improved from NYHA class III to II. Sympathetic nerve activity (SNA. was recorded during 6 minutes of biventricular (BV), right ventricular apical (RVA. and left ventricular (LV. pacing. SNA was significantly lower during biventricular pacing (49.5 ± 4.0/min. compared with RVA (58.8 ±6:9/min, p = 0.016. and LV (63.3 ± 4.3/min, p = 0.002. pacing. BV pacing improves hemodynamics and decreases SNA compared with RVA or LV pacing
Perioperative Evaluation of Respiratory Muscle Strength after Scoliosis Correction in Patients with Duchenne Muscular Dystrophy
Study DesignRetrospective cohort study.PurposeTo investigate the effect of spinal correction on respiratory muscle strength in patients with Duchenne muscular dystrophy (DMD).Overview of LiteratureSeveral studies have reported that scoliosis correction in patients with DMD does not improve pulmonary function. In these studies, pulmonary function was evaluated using the traditional spirometric values of percent vital capacity (%VC) and percent forced vital capacity (%FVC). However, traditional spirometry may not be suitable for patients with DMD because the results can be influenced by patient fatigue or level of understanding. Therefore, we evaluated respiratory function focusing on respiratory muscle strength using maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP), and sniff nasal inspiratory pressure (SNIP), in addition to %VC and %FVC.MethodsWe retrospectively reviewed 16 patients with DMD who underwent spinal correction surgery between 2006 and 2011 at Kitasato University Hospital. All patients were males, and the mean age was 13.5 years. Respiratory muscle strength was evaluated using MIP, MEP, and SNIP. Measurements were obtained preoperatively and at 1 and 6 months postoperatively, and %VC and %FVC were obtained preoperatively and within 6 months postoperatively.ResultsThe mean preoperative and postoperative %VC values were 54.0% and 51.7%, whereas the mean %FVC values were 53.9% and 53.2%, respectively. The mean MIP, MEP, and SNIP values obtained preoperatively and at 1 and 6 months postoperatively were as follows: MIP, 40.5, 42.7 and 47.2 cm H2O; MEP, 26.0, 28.0, and 29.0 cm H2O; and SNIP, 33.4, 33.0, and 33.0 cm H2O; respectively. The mean MIP and MEP values significantly improved postoperatively. There were no significant differences in SNIP, %VC, or %FVC preand postoperatively.ConclusionsBy focusing on respiratory muscle strength, our results suggest that scoliosis correction in patients with DMD might have a favorable effect on respiratory function
DECIGO pathfinder
DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article
TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand.
T follicular helper cells (Tfh) are important regulators of humoral responses. Human Tfh polarization pathways have been thus far associated with Th1 and Th17 polarization pathways. How human Tfh cells differentiate in Th2-skewed environments is unknown. We show that thymic stromal lymphopoietin (TSLP)-activated dendritic cells (DCs) promote human Tfh differentiation from naive CD4 T cells. We identified a novel population, distinct from Th2 cells, expressing IL-21 and TNF, suggestive of inflammatory cells. TSLP-induced T cells expressed CXCR5, CXCL13, ICOS, PD1, BCL6, BTLA, and SAP, among other Tfh markers. Functionally, TSLP-DC-polarized T cells induced IgE secretion by memory B cells, and this depended on IL-4Rα. TSLP-activated DCs stimulated circulating memory Tfh cells to produce IL-21 and CXCL13. Mechanistically, TSLP-induced Tfh differentiation depended on OX40-ligand, but not on ICOS-ligand. Our results delineate a pathway of human Tfh differentiation in Th2 environments
Amplified EPOR/JAK2 Genes Define a Unique Subtype of Acute Erythroid Leukemia
ゲノム解析から急性赤白血病の変異プロファイルと治療標的を解明 --特定の遺伝子変異群の組み合わせと、特徴となる遺伝子の増幅が鍵--. 京都大学プレスリリース. 2022-08-05.Acute erythroid leukemia (AEL) is a unique subtype of acute myeloid leukemia characterized by prominent erythroid proliferation whose molecular basis is poorly understood. To elucidate the underlying mechanism of erythroid proliferation, we analyzed 121 AEL using whole-genome/exome and/or targeted-capture sequencing, together with transcriptome analysis of 21 AEL samples. Combining publicly available sequencing data, we found a high frequency of gains/amplifications involving EPOR/JAK2 in TP53-mutated cases, particularly those having >80% erythroblasts designated as pure erythroid leukemia (10/13). These cases were frequently accompanied by gains/amplifications of ERG/ETS2 and associated with a very poor prognosis, even compared with other TP53-mutated AEL. In addition to activation of the STAT5 pathway, a common feature across all AEL cases, these AEL cases exhibited enhanced cell proliferation and heme metabolism and often showed high sensitivity to ruxolitinib in vitro and in xenograft models, highlighting a potential role of JAK2 inhibition in therapeutics of AEL
The status of DECIGO
DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present
- …