3,037 research outputs found

    Current-driven vortex domain wall dynamics by micromagnetic simulations

    Full text link
    Current-driven vortex wall dynamics is studied by means of a two-dimensional analytical model and micromagnetic simulation. By constructing a trial function for the vortex wall in the magnetic wire, we analytically solve for domain wall velocity and deformation in the presence of the current-induced spin torque. A critical current for the domain wall transformation from the vortex wall to the transverse wall is calculated. A comparison between the field- and current-driven wall dynamics is carried out. Micromagnetic simulations are performed to verify our analytical results.Comment: 7 pages, 4 figure

    Current-driven resonant excitation of magnetic vortex

    Full text link
    A magnetic vortex core in a ferromagnetic circular nanodot has a resonance frequency originating from the confinement of the vortex core. By the micromagnetic simulation including the spin-transfer torque, we show that the vortex core can be resonantly excited by an AC (spin-polarized) current through the dot and that the resonance frequency can be tuned by the dot shape. The resistance measurement under the AC current successfully detects the resonance at the frequency consistent with the simulation.Comment: 16 pages, 4 figure

    Real-space observation of current-driven domain wall motion in submicron magnetic wires

    Full text link
    Spintronic devices, whose operation is based on the motion of a magnetic domain wall (DW), have been proposed recently. If a DW could be driven directly by flowing an electric current instead of a magnetic field, the performance and functions of such device would be drastically improved. Here we report real-space observation of the current-driven DW motion by using a well-defined single DW in a micro-fabricated magnetic wire with submicron width. Magnetic force microscopy (MFM) visualizes that a single DW introduced in the wire is displaced back and forth by positive and negative pulsed-current, respectively. We can control the DW position in the wire by tuning the intensity, the duration and the polarity of the pulsed-current. It is, thus, demonstrated that spintronic device operation by the current-driven DW motion is possible.Comment: Accepted and published in PR

    Electrical rectification effect in single domain magnetic microstrips: a micromagnetics-based analysis

    Full text link
    Upon passing an a.c. electrical current along magnetic micro- or nanostrips, the measurement of a d.c. voltage that depends sensitively on current frequency and applied field has been recently reported by A. Yamaguchi and coworkers. It was attributed to the excitation of spin waves by the spin transfer torque, leading to a time-varying anisotropic magnetoresistance and, by mixing of a.c. current and resistance, to a d.c. voltage. We have performed a quantitative analysis by micromagnetics, including the spin transfer torque terms considered usually, of this situation. The signals found from the spin transfer torque effect are several orders of magnitude below the experimental values, even if a static inhomogeneity of magnetization (the so-called ripple) is taken into account. On the other hand, the presence of a small non-zero average Oersted field is shown to be consistent with the full set of experimental results, both qualitatively and quantitatively. We examine, quantitatively, several sources for this average field and point to the contacts to the sample as a likely origin.Comment: to be published in Journal of Applied Physic

    Significance of myocardial tenascin-C expression in left ventricular remodelling and long-term outcome in patients with dilated cardiomyopathy

    Get PDF
    Aim Dilated cardiomyopathy (DCM) has a variety of causes, and no useful approach to predict left ventricular (LV) remodelling and long-term outcome has yet been established. Myocardial tenascin-C (TNC) is known to appear under pathological conditions, possibly to regulate cardiac remodelling. The aim of this study was to clarify the significance of myocardial TNC expression in LV remodelling and the long-term outcome in DCM. Methods and results One hundred and twenty-three consecutive DCM patients who underwent endomyocardial biopsy for initial diagnosis were studied. Expression of TNC in biopsy sections was analysed immunohistochemically to quantify the ratio of the TNC-positive area to the whole myocardial tissue area (TNC area). Clinical parameters associated with TNC area were investigated. The patients were divided into two groups based on receiver operating characteristic analysis of TNC area to predict death: high TNC group with TNC area ≥2.3% (22 patients) and low TNC group with TNC area <2.3% (101 patients). High TNC was associated with diabetes mellitus. Comparing echocardiographic findings between before and 9 months after endomyocardial biopsy, the low TNC group was associated with decreased LV end-diastolic diameter and increased LV ejection fraction, whereas the high TNC group was not. Survival analysis revealed a worse outcome in the high TNC group than in the low TNC group (P < 0.001). Multivariable Cox regression analysis revealed that TNC area was independently associated with poor outcome (HR = 1.347, P = 0.032). Conclusions Increased myocardial TNC expression was associated with worse LV remodeling and long-term outcome in DCM

    Empirically Driven Use Case Metamodel Evolution

    Get PDF
    Metamodel evolution is rarely driven by empirical evidences of metamodel drawbacks. In this paper, the evolution of the use case metamodel used by the publicly available requirements management tool REM is presented. This evolution has been driven by the analysis of empirical data obtained during the assessment of several metrics–based verification heuristics for use cases developed by some of the authors and previously presented in other international fora. The empirical analysis has made evident that some common defects found in use cases developed by software engineering students were caused not only by their lack of experience but also by the expressive limitations imposed by the underlying use case metamodel used in REM. Once these limitations were clearly identified, a number of evolutionary changes were proposed to the REM use case metamodel in order to increase use case quality, i.e. to avoid those situations in which the metamodel were the cause of defects in use case specifications.Ministerio de Ciencia y Tecnología TIC 2003-02737-C02-0
    • …
    corecore