166 research outputs found
Proteinase-mediated drastic morphological change of peptide-amphiphile to induce supramolecular hydrogelation
We report a novel peptide-amphiphile having a simple molecular structure that can gelate an aqueous solution at a remarkably low concentration and can be designed to be responsive to a disease-related enzyme by undergoing a drastic morphological change
USE-DEPENDENT BLOCK AND RECOVERY OF NA⁺ CHANNELS BY CLASS IC ANTIARRHYTHMIC DRUGS (FLECAINIDE AND ETHACIZIN) IN CANINE VENTRICULAR MUSCLE
Electrophysiological effects of flecainide and ethacizin (class Ic antiarrhythmic drugs) were examined using conventional microelectrode techniques. Flecainide significantly depressed the maximum rate of depolarization (⩒max) at 3x10⁻⁶M, and depolarized the resting potential (RP) at 10⁻⁵M, in a concentration-dependent manner. Ethacizin depressed ⩒max at 10⁻⁶M, and depolarized RP at 10⁻⁵M, significantly. However, both drugs did not affect the effective refractory period (ERP) nor the action potential duration (75% repolarization, APD₇₅). Both also had no effect on the action potential amplitude (APA). On the other hand, the drugs caused a use (or rate)-dependent block of ⩒max, and their time constants of onset of inhibition (at 3 Hz) were slow ; 6.3±1.2 msec (n=10) in the presence of flecainide (10⁻⁵M), and 6.0±1.6 msec (n=6) in the presence of ethacizin (10⁻⁵M). The time constants of the recovery were also so late : 12.2±2.5 sec (n=3) for flecainide (10⁻⁵M), and 27.1±13.3 sec (n=3) for ethacizin (2x10⁻⁶M), These results indicate that both antiarrhythmic drugs, flecainide and ethacizin, have no effect on APD₇₅ and ERP, but possess the characteristics for very slow kinetics of the use-dependent block and the recovery for fast Na⁺ channels of cardiac muscles. Ethacizin produces slower kinetics for the Na⁺ channels than flecainide
Inhibition of Plasminogen Activator Inhibitor- 1 Attenuates Transforming Growth Factor- β-Dependent Epithelial Mesenchymal Transition and Differentiation of Fibroblasts to Myofibroblasts
Transforming growth factor-β (TGF-β) is central during the pathogenesis of pulmonary fibrosis, in which the plasminogen activator inhibitor-1 (PAI-1) also has an established role. TGF-β is also known to be the strongest inducer of PAI-1. To investigate the link between PAI-1 and TGF-β in fibrotic processes, we evaluated the effect of SK-216, a PAI-1-specific inhibitor, in TGF-β-dependent epithelial-mesenchymal transition (EMT) and fibroblast to myofibroblast differentiation. In human alveolar epithelial A549 cells, treatment with TGF-β induced EMT, whereas co-treatment with SK-216 attenuated the occurrence of EMT. The inhibition of TGF-β-induced EMT by SK-216 was also confirmed in the experiment using murine epithelial LA-4 cells. Blocking EMT by SK-216 inhibited TGF-β-induced endogenous production of PAI-1 and TGF-β in A549 cells as well. These effects of SK-216 were not likely mediated by suppressing either Smad or ERK pathways. Using human lung fibroblast MRC-5 cells, we demonstrated that SK-216 inhibited TGF-β-dependent differentiation of fibroblasts to myofibroblasts. We also observed this inhibition by SK-216 in human primary lung fibroblasts. Following these in vitro results, we tested oral administration of SK-216 into mice injected intratracheally with bleomycin.We found that SK-216 reduced the degree of bleomycin-induced pulmonary fibrosis in mice. Although the precise mechanisms underlying the link between TGF-β and PAI-1 regarding fibrotic process were not determined, PAI-1 seems to act as a potent downstream effector on the pro-fibrotic property of TGF-β. In addition, inhibition of PAI-1 activity by a PAI-1 inhibitor exerts an antifibrotic effect even in vivo. These data suggest that targeting PAI-1 as a downstream effector of TGF-β could be a promising therapeutic strategy for pulmonary fibrosis
Physicochemical Properties of Amphoteric β-Lactam Antibiotics. III. Stability, Solubility, and Dissolution Behavior of Cefatrizine and Cefadroxil as a Function of pH
金沢大学大学院自然科学研究科分子作用学金沢大学薬学
Unfolded protein response, activated by OASIS family transcription factors, promotes astrocyte differentiation
OASIS is a member of the CREB/ATF family of transcription factors and modulates cell- or tissue-specific unfolded protein response signalling. Here we show that this modulation has a critical role in the differentiation of neural precursor cells into astrocytes. Cerebral cortices of mice specifically deficient in OASIS (Oasis−/−) contain fewer astrocytes and more neural precursor cells than those of wild-type mice during embryonic development. Furthermore, astrocyte differentiation is delayed in primary cultured Oasis−/− neural precursor cells. The transcription factor Gcm1, which is necessary for astrocyte differentiation in Drosophila, is revealed to be a target of OASIS. Introduction of Gcm1 into Oasis−/− neural precursor cells improves the delayed differentiation of neural precursor cells into astrocytes by accelerating demethylation of the Gfap promoter. Gcm1 expression is temporally controlled by the unfolded protein response through interactions between OASIS family members during astrocyte differentiation. Taken together, our findings demonstrate a novel mechanism by which OASIS and its associated family members are modulated by the unfolded protein response to finely control astrocyte differentiation.This work was partly supported by grants from the Japan Society for the Promotion of Science KAKENHI (#22020030, #22800049), Sumitomo Foundation, Mochida Memorial Foundation for Medical and Pharmaceutical Research, Astellas Foundation for Research on Metabolic Disorders, Takeda Science Foundation, The Pharmacological Research Foundation Tokyo, Daiichi-Sankyo Foundation of Life Science, The Naito Foundation, Senri Life Science Foundation, Hokuto Foundation for Bioscience, and The Japan Prize Foundation
The nucleocytoplasmic shuttling protein CIZ reduces adult bone mass by inhibiting bone morphogenetic protein–induced bone formation
Osteoporosis is a major health problem; however, the mechanisms regulating adult bone mass are poorly understood. Cas-interacting zinc finger protein (CIZ) is a nucleocytoplasmic shuttling protein that localizes at cell adhesion plaques that form where osteoblasts attach to substrate. To investigate the potential role of CIZ in regulating adult bone mass, we examined the bones in CIZ-deficient mice. Bone volume was increased and the rates of bone formation were increased in CIZ-deficient mice, whereas bone resorption was not altered. CIZ deficiency enhanced the levels of mRNA expression of genes encoding proteins related to osteoblastic phenotypes, such as alkaline phosphatase (ALP) as well as osterix mRNA expression in whole long bones. Bone marrow cells obtained from the femora of CIZ-deficient mice revealed higher ALP activity in culture and formed more mineralized nodules than wild-type cells. CIZ deficiency enhanced bone morphogenetic protein (BMP)–induced osteoblastic differentiation in bone marrow cells in cultures, indicating that BMP is the target of CIZ action. CIZ deficiency increased newly formed bone mass after femoral bone marrow ablation in vivo. Finally, BMP-2–induced bone formation on adult mouse calvariae in vivo was enhanced by CIZ deficiency. These results establish that CIZ suppresses the levels of adult bone mass through inhibition of BMP-induced activation of osteoblasts
Reduced endogenous secretory RAGE in blood and bronchoalveolar lavage fluid is associated with poor prognosis in idiopathic pulmonary fibrosis
Background The endogenous secretory receptor for advanced glycation end products (esRAGE) is a soluble isoform produced by alternative splicing of the RAGE gene. The isoform has anti-inflammatory properties due to its inhibition of the RAGE/ligand interaction and is reduced in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF). This study aimed to investigate the association of esRAGE serum and bronchoalveolar lavage fluid (BALF) levels with progression of IPF. Methods This study included 79 IPF patients and 90 healthy controls. IPF and control serum esRAGE levels were compared, and the correlation between serum and BALF esRAGE levels was analyzed in 57 IPF patient samples. We also investigated the relationship of esRAGE serum and BALF levels with prognoses and lung function parameters in patients with IPF. Results Serum esRAGE levels in IPF patients were significantly lower than those in healthy controls (162.0 +/- 102.4 ng/ml and 200.7 +/- 107.3 ng/ml,p = 0.009), although the baseline characteristics of age and smoking history were not matched. Serum levels of esRAGE were correlated with BALF esRAGE levels (r(s) = 0.317). The BALF esRAGE levels were also correlated with diffusion capacity for carbon monoxide (r(s) = 0.406). A Kaplan-Meier curve analysis and univariate/multivariate Cox hazard proportion analysis revealed that lower levels of esRAGE in blood and BALF were significantly associated with poorer prognoses in patients with IPF. Conclusions Decreased esRAGE levels in BALF and blood were associated with poor prognoses in patients with IPF. These results suggest that esRAGE could be related to the pathophysiology of IPF and serum esRAGE could be a potential prognostic marker of IPF.Peer reviewe
Factors related to renal cortical atrophy development after glucocorticoid therapy in IgG4-related kidney disease: a retrospective multicenter study.
Background: In immunoglobulin G4-related kidney disease (IgG4-RKD), focal or diffuse renal cortical atrophy is often observed in the clinical course after glucocorticoid therapy. This study aimed to clarify the factors related to renal atrophy after glucocorticoid therapy in IgG4-RKD. Methods: We retrospectively evaluated clinical features including laboratory data and computed tomography (CT) findings before and after glucocorticoid therapy in 23 patients diagnosed with IgG4-RKD, all of whom were followed up for more than 24 months. Results: Seventeen patients were men, and six were women (average age 62.0 years). Average follow-up period was 54.9 months. The average estimated glomerular filtration rate (eGFR) at diagnosis was 81.7 mL/min/1.73 m2. All patients had had multiple low-density lesions on contrast-enhanced CT before glucocorticoid therapy, and showed disappearance or reduction of these lesions after it. Pre-treatment eGFR and serum IgE level in 11 patients in whom renal cortical atrophy developed 24 months after the start of glucocorticoid therapy were significantly different from those in 12 patients in whom no obvious atrophy was found at that time (68.9 ± 30.1 vs 93.5 ± 14.1 mL/min/1.73 m2, P = 0.036, and 587 ± 254 vs 284 ± 263 IU/mL, P = 0.008, respectively). Pre-treatment eGFR and serum IgE level were also significant risk factors for renal atrophy development 24 months after the start of therapy with an odds ratio of 0.520 (per 10 mL/min/1.73 m2, 95% confidence interval (CI) 0.273-0.993, P = 0.048) and 1.090 (per 10 IU/mL, 95% CI: 1.013-1.174, P = 0.022), respectively, in age-adjusted, sex-adjusted, serum IgG4 level-adjusted logistic regression analysis. Receiver operating characteristic curve analysis showed that eGFR of less than 71.0 mL/min/1.73 m2 and serum IgE of more than 436.5 IU/mL were the most appropriate cutoffs and yielded sensitivity of 63.6% and specificity of 100%, and sensitivity of 90.9% and specificity of 75.0%, respectively, in predicting renal atrophy development. Conclusions: This study suggests that pre-treatment renal insufficiency and serum IgE elevation predict renal atrophy development after glucocorticoid therapy in IgG4-RKD. © 2016 The Author(s)
- …