93 research outputs found

    Peculiar microstructural evolution and tensile properties of β-containing γ-TiAl alloys fabricated by electron beam melting

    Get PDF
    The microstructure and tensile properties of β-containing Ti–44Al–4Cr alloy rods additively manufactured by electron beam melting (EBM) process were examined as a function of input energy density determined by the processing parameters. To the best of our knowledge, this is the first report to demonstrate that two types of fine microstructures have been obtained in the β-containing γ-TiAl alloys by varying the energy density during the EBM process. A uniform α2/β/γ mixed structure containing an α2/γ lamellar region and a β/γ dual-phase region is formed at high energy density conditions. On the other hand, a lower energy density leads to the formation of a peculiar layered microstructure perpendicular to the building direction, consisting of a ultrafine α2/γ lamellar grain layer and a α2/β/γ mixed structure layer. The difference in the microstructures originates from the difference in the solidification microstructure and the temperature distribution from the melt pool, which are dependent on the energy density. Furthermore, it was found that the strength of the alloys is closely related to the volume fractions of the β phase and the ultrafine α2/γ lamellar grains which originates from the massive α grains formed by rapid cooling under low energy density conditions. The alloys with high amounts of these peculiar microstructures exhibit high strength comparable to and higher than the conventional β-containing γ-TiAl at room temperature and 1023 K, respectively.Cho K., Kawabata H., Hayashi T., et al. Peculiar microstructural evolution and tensile properties of β-containing γ-TiAl alloys fabricated by electron beam melting. Additive Manufacturing, 46, 102091. https://doi.org/10.1016/j.addma.2021.102091

    Improving the tensile properties of additively manufactured β-containing tial alloys via microstructure control focusing on cellular precipitation reaction

    Get PDF
    The effect of a two-step heat treatment on the microstructure and high-temperature tensile properties of β-containing Ti-44Al-4Cr (at%) alloys fabricated by electron beam powder bed fusion were examined by focusing on the morphology of α2/γ lamellar grains and β/γ cells precipitated at the lamellar grain boundaries by a cellular precipitation reaction. The alloys subjected to the first heat treatment step at 1573 K in the α + β two-phase region exhibit a non-equilibrium microstructure consisting of the α2/γ lamellar grains with a fine lamellar spacing and a β/γ duplex structure located at the grain boundaries. In the second step of heat treatment, i.e., aging at 1273 K in the β + γ two-phase region, the β/γ cells are discontinuously precipitated from the lamellar grain boundaries due to excess Cr supersaturation in the lamellae. The volume fraction of the cells and lamellar spacing increase with increasing aging time and affect the tensile properties of the alloys. The aged alloys exhibit higher strength and comparable elongation at 1023 K when compared to the as-built alloys. The strength of these alloys is strongly dependent on the volume fraction and lamellar spacing of the α2/γ lamellae. In addition, the morphology of the β/γ cells is also an important factor controlling the fracture mode and ductility of these alloys.Cho K., Odo H., Okamoto K., et al. Improving the tensile properties of additively manufactured β-containing tial alloys via microstructure control focusing on cellular precipitation reaction. Crystals, 11, 7, 809. https://doi.org/10.3390/cryst11070809

    Grain Boundary Precipitation Control of GCP Phase Using TCP or A2 Phase in Ni-Based Alloys

    No full text
    To cover the grain boundary (GB) of the Ni phase with precipitates, the GB precipitation behavior of both topologically close-packed (TCP) or A2 and geometrically close-packed (GCP) phases was investigated in two Ni–Nb–(Co, Cr) ternary systems. The Ni/TCP or A2/GCP three-phase region existed in both systems. In the Ni-Nb-Co ternary system, Nb was approximately equally partitioned into both Co7Nb2 (mC18 structure, TCP) and (Ni, Co)3Nb (D019 structure, GCP) phases. In the Ni–Nb-Cr ternary system, Nb and Cr were mainly partitioned into the Ni3Nb (D0a structure, GCP) and Cr (A2 structure) phases, respectively. In the Ni–Nb–Co ternary system, the Co7Nb2 phase grew along the GB, whereas the (Ni, Co)3Nb phase grew toward the grain interior (GI). However, the growth of the Ni3Nb phase toward the GI was suppressed in the Ni–Nb–Cr ternary system. The suppression of growth of the GCP phase and covering the GB using both the TCP or A2 and GCP phases might be possible in a system where the precipitation of the GCP phase nucleating on the GB prior to the TCP or A2 phase increases supersaturation for precipitation of the TCP or A2 phase
    corecore