6,806 research outputs found
Electrons doped in cubic perovskite SrMnO3: isotropic metal versus chainlike ordering of Jahn-Teller polarons
Single crystals of electron-doped SrMnO3 with a cubic perovskite structure
have been systematically investigated as the most canonical
(orbital-degenerate) double-exchange system, whose ground states have been
still theoretically controversial. With only 1-2% electron doping by Ce
substitution for Sr, a G-type antiferromagnetic metal with a tiny spin canting
in a cubic lattice shows up as the ground state, where the Jahn-Teller polarons
with heavy mass are likely to form. Further electron doping above 4%, however,
replaces this isotropic metal with an insulator with tetragonal lattice
distortion, accompanied by a quasi-one-dimensional 3z^2-r^2 orbital ordering
with the C-type antiferromagnetism. The self-organization of such dilute
polarons may reflect the critical role of the cooperative Jahn-Teller effect
that is most effective in the originally cubic system.Comment: 5 pages, 4 figure
Gravitational Radiation from a Naked Singularity -- Odd-Parity Perturbation --
It has been suggested that a naked singularity may be a good candidate for a
strong gravitational wave burster. The naked singularity occurs in the generic
collapse of an inhomogeneous dust ball. We study odd-parity mode of
gravitational waves from a naked singularity of the Lema\^{\i}tre-Tolman-Bondi
space-time. The wave equation for gravitational waves are solved by numerical
integration using the single null coordinate. The result is that the naked
singularity is not a strong source of the odd-parity gravitational radiation
although the metric perturbation grows in the central region. Therefore, the
Cauchy horizon in this space-time would be marginally stable against odd-parity
perturbations.Comment: 14 pages, 7 figures, to be published in Prog. Theor. Phys. Final
version, with minor changes. Reference 13 adde
Gravitational Radiation from a Naked Singularity. II - Even-Parity Perturbation -
A naked singularity occurs in the generic collapse of an inhomogeneous dust
ball. We study the even-parity mode of gravitational waves from a naked
singularity of the Lema\^{\i}tre-Tolman-Bondi spacetime. The wave equations for
gravitational waves are solved by numerical integration using the single null
coordinate. The result implies that the metric perturbation grows when it
approaches the Cauchy horizon and diverges there, although the naked
singularity is not a strong source of even-parity gravitational radiation.
Therefore, the Cauchy horizon in this spacetime should be unstable with respect
to linear even-parity perturbations.Comment: 16 pages, 5 figures, errors and typos corrected, final versio
Noise-Induced Synchronization and Clustering in Ensembles of Uncoupled Limit-Cycle Oscillators
We study synchronization properties of general uncoupled limit-cycle
oscillators driven by common and independent Gaussian white noises. Using phase
reduction and averaging methods, we analytically derive the stationary
distribution of the phase difference between oscillators for weak noise
intensity. We demonstrate that in addition to synchronization, clustering, or
more generally coherence, always results from arbitrary initial conditions,
irrespective of the details of the oscillators.Comment: 6 pages, 2 figure
Effect of cation size variance on spin and orbital order in Eu(LaY)VO
We have investigated the -ion ( = rare earth or Y) size variance effect
on spin/orbital order in Eu(LaY)VO. The
size variance disturbs one-dimensional orbital correlation in -type
spin/-type orbital ordered states and suppresses this spin/orbital order. In
contrast, it stabilizes the other spin/orbital order. The results of neutron
and resonant X-ray scattering denote that in the other ordered phase, the
spin/orbital patterns are -type/-type, respectively.Comment: 4 pages, 4 figures, accepted to Rapid Communication in Physical
Review
Physical Processes in Naked Singularity Formation
Gravitational collapse is one of the most fruitful subjects in gravitational
physics. It is well known that singularity formation is inevitable in complete
gravitational collapse. It was conjectured that such a singularity should be
hidden by horizons if it is formed from generic initial data with physically
reasonable matter fields. Many possible counterexamples to this conjecture have
been proposed over the past three decades, although none of them has proved to
be sufficiently generic. In these examples, there appears a singularity that is
not hidden by horizons. This singularity is called a `naked singularity.' The
appearance of a naked singularity represents the formation of an observable
high-curvature, strong-gravity region. In this paper we review examples of
naked singularity formation and recent progress in research of observable
physical processes - gravitational radiation and quantum particle creation -
from a forming naked singularity.Comment: 76 pages, 25 figure file
How Do Nonlinear Voids Affect Light Propagation ?
Propagation of light in a clumpy universe is examined. As an inhomogeneous
matter distribution, we take a spherical void surrounded by a dust shell where
the ``lost mass'' in the void is compensated by the shell. We study how the
angular-diameter distance behaves when such a structure exists. The
angular-diameter distance is calculated by integrating the Raychaudhuri
equation including the shear. An explicit expression for the junction condition
for the massive thin shell is calculated. We apply these results to a dust
shell embedded in a Friedmann universe and determine how the distance-redshift
relation is modified compared with that in the purely Friedmann universe. We
also study the distribution of distances in a universe filled with voids. We
show that the void-filled universe gives a larger distance than the FRW
universe by at if the size of the void is of the
Horizon radius.Comment: To appear in Prog. Theor. Phys. 10
- …