16,261 research outputs found

    Planet formation around stars of various masses: The snow line and the frequency of giant planets

    Full text link
    We use a semi-analytic circumstellar disk model that considers movement of the snow line through evolution of accretion and the central star to investigate how gas giant frequency changes with stellar mass. The snow line distance changes weakly with stellar mass; thus giant planets form over a wide range of spectral types. The probability that a given star has at least one gas giant increases linearly with stellar mass from 0.4 M_sun to 3 M_sun. Stars more massive than 3 M_sun evolve quickly to the main-sequence, which pushes the snow line to 10-15 AU before protoplanets form and limits the range of disk masses that form giant planet cores. If the frequency of gas giants around solar-mass stars is 6%, we predict occurrence rates of 1% for 0.4 M_sun stars and 10% for 1.5 M_sun stars. This result is largely insensitive to our assumed model parameters. Finally, the movement of the snow line as stars >2.5 M_sun move to the main-sequence may allow the ocean planets suggested by Leger et. al. to form without migration.Comment: Accepted to ApJ. 12 pages of emulateap

    Giant nonlinear conduction and thyristor-like negative derivative resistance in BaIrO3 single crystals

    Full text link
    We synthesized single-crystalline samples of monoclinic BaIrO3 using a molten flux method, and measured their magnetization, resistivity, Seebeck coefficient and nonlinear voltage-current characteristics. The magnetization rapidly increases below a ferromagnetic transition temperature TC of 180 K, where the resistivity concomitantly shows a hump-type anomaly, followed by a sharp increase below 30 K. The Seebeck coefficient suddenly increases below TC, and shows linear temperature dependence below 50 K. A most striking feature of this compound is that the anomalously giant nonlinear conduction is observed below 30 K, where a small current density of 20 A/cm2 dramatically suppresses the sharp increase in resistivity to induce a metallic conduction down to 4 K.Comment: 10 pages, 4 figures Submitted to Physical Review Letter

    Comments on differential cross section of phi-meson photoproduction at threshold

    Get PDF
    We show that the differential cross section d_sigma/d_t of gamma p --> \phi p reaction at the threshold is finite and its value is crucial to the mechanism of the phi meson photoproduction and for the models of phi-N interaction.Comment: 8 pages, 2 figure

    Drude Weight of the Two-Dimensional Hubbard Model -- Reexamination of Finite-Size Effect in Exact Diagonalization Study --

    Full text link
    The Drude weight of the Hubbard model on the two-dimensional square lattice is studied by the exact diagonalizations applied to clusters up to 20 sites. We carefully examine finite-size effects by consideration of the appropriate shapes of clusters and the appropriate boundary condition beyond the imitation of employing only the simple periodic boundary condition. We successfully capture the behavior of the Drude weight that is proportional to the squared hole doping concentration. Our present result gives a consistent understanding of the transition between the Mott insulator and doped metals. We also find, in the frequency dependence of the optical conductivity, that the mid-gap incoherent part emerges more quickly than the coherent part and rather insensitive to the doping concentration in accordance with the scaling of the Drude weight.Comment: 9 pages with 10 figures and 1 table. accepted in J. Phys. Soc. Jp

    Ring Formation in Magnetically Subcritical Clouds and Multiple Star Formation

    Get PDF
    We study numerically the ambipolar diffusion-driven evolution of non-rotating, magnetically subcritical, disk-like molecular clouds, assuming axisymmetry. Previous similar studies have concentrated on the formation of single magnetically supercritical cores at the cloud center, which collapse to form isolated stars. We show that, for a cloud with many Jeans masses and a relatively flat mass distribution near the center, a magnetically supercritical ring is produced instead. The supercritical ring contains a mass well above the Jeans limit. It is expected to break up, through both gravitational and possibly magnetic interchange instabilities, into a number of supercritical dense cores, whose dynamic collapse may give rise to a burst of star formation. Non-axisymmetric calculations are needed to follow in detail the expected ring fragmentation into multiple cores and the subsequent core evolution. Implications of our results on multiple star formation in general and the northwestern cluster of protostars in the Serpens molecular cloud core in particular are discussed.Comment: 25 pages, 4 figures, to appear in Ap

    S wave superconductivity in newly discovered superconductor BaTi2_2Sb2_2O revealed by 121/123^{121/123}Sb-NMR/Nuclear Quadrupole Resonance measurements

    Get PDF
    We report the 121/123^{121/123}Sb-NMR/nuclear quadrupole resonance (NQR) measurements on the newly-discovered superconductor BaTi2_2Sb2_2O with a two-dimensional Ti2_2O square-net layer formed with Ti3+^{3+} (3d1d^1). NQR measurements revealed that the in-plane four-fold symmetry is broken at the Sb site below TAT_{\rm A} \sim 40 K, without an internal field appearing at the Sb site. These exclude a spin-density wave (SDW)/ charge density wave (CDW) ordering with incommensurate correlations, but can be understood with the commensurate CDW ordering at TAT_{\rm A}. The spin-lattice relaxation rate 1/T11/T_1, measured at the four-fold symmetry breaking site, decreases below superconducting (SC) transition temperature TcT_{\rm c}, indicative of the microscopic coexistence of superconductivity and the CDW/SDW phase below TAT_{\rm A}. Furthermore, 1/T11/T_1 of 121^{121}Sb-NQR shows a coherence peak just below TcT_{\rm c} and decreases exponentially at low temperatures. These results are in sharp contrast with those in cuprate and iron-based superconductors, and strongly suggest that its SC symmetry is classified to an ordinary s-wave state.Comment: 5 pages, 6 figure

    Resonance Contributions to η\eta Photoproduction on Protons Found Using Dispersion Relations and an Isobar Model

    Full text link
    The contributions of the resonances D13(1520)D_{13}(1520), S11(1535)S_{11}(1535), S11(1650)S_{11}(1650), D15(1675)D_{15}(1675), F15(1680)F_{15}(1680), D13(1700)D_{13}(1700), P11(1710)P_{11}(1710), P13(1720)P_{13}(1720) to γpηp\gamma p\to \eta p are found from the data on cross sections, beam and target asymmetries using two approaches: fixed-t dispersion relations and an isobar model. Utilization of the two approaches and comparison of the results obtained with different parametrizations of the resonance contributions allowed us to make conclusions about the model-dependence of these contributions. We conclude that the results for the contributions of the resonances D13(1520)D_{13}(1520), S11(1535)S_{11}(1535), F15(1680)F_{15}(1680) to corresponding multipole amplitudes are stable. With this the results for D13(1520)D_{13}(1520) and F15(1680)F_{15}(1680), combined with their PDG photoexcitation helicity amplitudes, allowed us to find the branching ratios Br(D13(1520)ηN)=0.05±0.02Br (D_{13}(1520)\to \eta N)=0.05\pm 0.02%, Br(F15(1680)ηN)=0.16±0.04Br (F_{15}(1680)\to \eta N)=0.16\pm0.04% which have significantly better accuracy than the PDG data. The total Breit-Wigner width of the S11(1535)S_{11}(1535) is model-dependent, we have obtained Γ(S11(1520))=142MeV\Gamma (S_{11}(1520))=142 MeV and 195MeV195 MeV using dispersion relations and the isobar model, respectively. The results for the S11(1650)S_{11}(1650), D15(1675)D_{15}(1675), P11(1710)P_{11}(1710), P13(1720)P_{13}(1720) are model dependent, only the signs and orders of magnitude of their contributions to multipole amplitudes are determined. The results for the D13(1700)D_{13}(1700) are strongly model-dependent.Comment: 26 pages, 6 figure

    A Spherical Model for "Starless" Cores of Magnetic Molecular Clouds and Dynamical Effects of Dust Grains

    Get PDF
    In the standard picture of isolated star formation, dense ``starless'' cores are formed out of magnetic molecular clouds due to ambipolar diffusion. Under the simplest spherical geometry, I demonstrate that ``starless'' cores formed this way naturally exhibit a large scale inward motion, whose size and speed are comparable to those detected recently by Taffala et al. and Williams et al. in ``starless'' core L1544. My model clouds have a relatively low mass (of order 10 MM_\odot) and low field strength (of order 10 μ\muG) to begin with. They evolve into a density profile with a central plateau surrounded by a power-law envelope, as found previously. The density in the envelope decreases with radius more steeply than those found by Mouschovias and collaborators for the more strongly magnetized, disk-like clouds. At high enough densities, dust grains become dynamically important by greatly enhancing the coupling between magnetic field and the neutral cloud matter. The trapping of magnetic flux associated with the enhanced coupling leads, in the spherical geometry, to a rapid assemblage of mass by the central protostar, which exacerbates the so-called ``luminosity problem'' in star formation.Comment: 27 pages, 4 figures, accepted by Ap
    corecore