15,567 research outputs found

    A quantum Monte Carlo study on the superconducting Kosterlitz-Thouless transition of the attractive Hubbard model on a triangular lattice

    Full text link
    We study the superconducting Kosterlitz-Thouless transition of the attractive Hubbard model on a two-dimensional triangular lattice using auxiliary field quantum Monte Carlo method for system sizes up to 12×1212\times 12 sites. Combining three methods to analyze the numerical data, we find, for the attractive interaction of U=−4tU=-4t, that the transition temperature stays almost constant within the band filling range of 1.0<n<1.41.0 < n < 1.4, while it is found to be much lower in the n<1n<1 region.Comment: RevTeX 6 page

    Enhanced energy relaxation process of quantum memory coupled with a superconducting qubit

    Full text link
    For quantum information processing, each physical system has different advantage for the implementation and so hybrid systems to benefit from several systems would be able to provide a promising approach. One of the common hybrid approach is to combine a superconducting qubit as a controllable qubit and the other quantum system with a long coherence time as a memory qubit. The superconducting qubit allows us to have an excellent controllability of the quantum states and the memory qubit is capable of storing the information for a long time. By tuning the energy splitting between the superconducting qubit and the memory qubit, it is believed that one can realize a selective coupling between them. However, we have shown that this approach has a fundamental drawback concerning energy leakage from the memory qubit. The detuned superconducting qubit is usually affected by severe decoherence, and this causes an incoherent energy relaxation from the memory qubit to the superconducting qubit via the imperfect decoupling. We have also found that this energy transport can be interpreted as an appearance of anti quantum Zeno effect induced by the fluctuation in the superconducting qubit. We also discuss a possible solution to avoid such energy relaxation process, which is feasible with existing technology

    Magnetization curve of the kagome-strip-lattice antiferromagnet

    Full text link
    We study the magnetization curve of the Heisenberg model on the quasi-one-dimensional kagome-strip lattice that shares the same lattice structure in the inner part with the two-dimensional kagome lattice. Our numerical calculations based on the density matrix renormalization group method reveal that the system shows several magnetization plateaus between zero magnetization and the saturated one; we find the presence of the magnetic plateaus with the n=7 height of the saturation for n =1,2,3,4,5 and 6 in the S =1/2 case, whereas we detect only the magnetic plateaus of n =1,3,5 and 6 in the S =1 case. In the cases of n =2,4 and 6 for the S=1/2 system, the Oshikawa-Yamanaka-Affleck condition suggests the occurrence of the translational symmetry breaking (TSB). We numerically confirm this non-trivial TSB in our results of local magnetizations. We have also found that the macroscopic jump appears near the saturation field irrespective of the spin amplitude as well as the two-dimensional kagome model.Comment: 6pages, 3figures, accepted for publication in Journal of Low Temperature Physic

    Analysis of high resolution satellite data for cosmic gamma ray bursts

    Get PDF
    Cosmic gamma ray bursts detected a germanium spectrometer on the low altitude satellite 1972-076B were surveyed. Several bursts with durations ranging from approximately 0.032 to 15 seconds were found and are tabulated. The frequency of occurrence/intensity distribution of these events was compared with the S to the -3/2 power curve of confirmed events. The longer duration events fall above the S to the -3/2 power curve of confirmed events, suggesting they are perhaps not all true cosmic gamma-ray bursts. The narrow duration events fall closely on the S to the -3/2 power curve. The survey also revealed several counting rate spikes, with durations comparable to confirmed gamma-ray bursts, which were shown to be of magnetospheric origin. Confirmation that energetic electrons were responsible for these bursts was achieved from analysis of all data from the complete payload of gamma-ray and energetic particle detectors on board the satellite. The analyses also revealed that the narrowness of the spikes was primarily spatial rather than temporal in character

    Magnetic properties of quantum Heisenberg ferromagnets with long-range interactions

    Full text link
    Quantum Heisenberg ferromagnets with long-range interactions decayin as 1/rp1/r^p in one and two dimensions are investigated by means of the Green's function method. It is shown that there exists a finite-temperature phase transition in the region d<p<2dd<p<2 d for the dd-dimensional case and that no transitions at any finite temperature exist for p≥2dp\ge 2 d; the critical temperature is also estimated. We study the magnetic properties of this model. We calculate the critical exponents' dependence on pp; these exponents also satisfy a scaling relation. Some of the results were also found using the modified spin-wave theory and are in remarkable agreement with each other.Comment: 13 pages(LaTeX REVTeX), 2 figures not included (postscript files available on request), submitted to Phys.Rev.

    Numerical-Diagonalization Study of Spin Gap Issue of the Kagome Lattice Heisenberg Antiferromagnet

    Full text link
    We study the system size dependence of the singlet-triplet excitation gap in the S=1/2S=1/2 kagome-lattice Heisenberg antiferromagnet by numerical diagonalization. We successfully obtain a new result of a cluster of 42 sites. The two sequences of gaps of systems with even-number sites and that with odd-number sites are separately analyzed. Careful examination clarifies that there is no contradiction when we consider the system to be gapless.Comment: 5 pages, 3 figures, 1 table, received by J. Phys. Soc. Jpn. on 20 Jan 2011, to be published in this journa

    Long-term behavior of energetic inner-belt protons

    Get PDF
    Long term behavior of energetic inner-belt proton

    Magnetic Fields in Dark Cloud Cores: Arecibo OH Zeeman Observations

    Full text link
    We have carried out an extensive survey of magnetic field strengths toward dark cloud cores in order to test models of star formation: ambipolar-diffusion driven or turbulence driven. The survey involved ∼500\sim500 hours of observing with the Arecibo telescope in order to make sensitive OH Zeeman observations toward 34 dark cloud cores. Nine new probable detections were achieved at the 2.5-sigma level; the certainty of the detections varies from solid to marginal, so we discuss each probable detection separately. However, our analysis includes all the measurements and does not depend on whether each position has a detection or just a sensitive measurement. Rather, the analysis establishes mean (or median) values over the set of observed cores for relevant astrophysical quantities. The results are that the mass-to-flux ratio is supercritical by ∼2\sim 2, and that the ratio of turbulent to magnetic energies is also ∼2\sim 2. These results are compatible with both models of star formation. However, these OH Zeeman observations do establish for the first time on a statistically sound basis the energetic importance of magnetic fields in dark cloud cores at densities of order 103−410^{3-4} cm−3^{-3}, and they lay the foundation for further observations that could provide a more definitive test.Comment: 22 pages, 2 figures, 2 table

    The flux phase problem on the ring

    Full text link
    We give a simple proof to derive the optimal flux which minimizes the ground state energy in one dimensional Hubbard model, provided the number of particles is even.Comment: 8 pages, to appear in J. Phys. A: Math. Ge
    • …
    corecore