20,724 research outputs found

    Mechanism of Magnetic Flux Loss in Molecular Clouds

    Full text link
    We investigate the detailed processes working in the drift of magnetic fields in molecular clouds. To the frictional force, whereby the magnetic force is transmitted to neutral molecules, ions contribute more than half only at cloud densities nH<104cm3n_{\rm H} < 10^4 {\rm cm}^{-3}, and charged grains contribute more than 90% at nH>106cm3n_{\rm H} > 10^6 {\rm cm}^{-3}. Thus grains play a decisive role in the process of magnetic flux loss. Approximating the flux loss time tBt_B by a power law tBBγt_B \propto B^{-\gamma}, where BB is the mean field strength in the cloud, we find γ2\gamma \approx 2, characteristic to ambipolar diffusion, only at nH<107cm3n_{\rm H} < 10^7 {\rm cm}^{-3}. At higher densities, γ\gamma decreases steeply with nHn_{\rm H}, and finally at nHndecafew×1011cm3n_{\rm H} \approx n_{\rm dec} \approx {\rm a few} \times 10^{11} {\rm cm}^{-3}, where magnetic fields effectively decouple from the gas, γ<<1\gamma << 1 is attained, reminiscent of Ohmic dissipation, though flux loss occurs about 10 times faster than by Ohmic dissipation. Ohmic dissipation is dominant only at nH>1×1012cm3n_{\rm H} > 1 \times 10^{12} {\rm cm}^{-3}. While ions and electrons drift in the direction of magnetic force at all densities, grains of opposite charges drift in opposite directions at high densities, where grains are major contributors to the frictional force. Although magnetic flux loss occurs significantly faster than by Ohmic dissipation even at very high densities as nHndecn_{\rm H} \approx n_{\rm dec}, the process going on at high densities is quite different from ambipolar diffusion in which particles of opposite charges are supposed to drift as one unit.Comment: 34 pages including 9 postscript figures, LaTex, accepted by Astrophysical Journal (vol.573, No.1, July 1, 2002

    Giant nonlinear conduction and thyristor-like negative derivative resistance in BaIrO3 single crystals

    Full text link
    We synthesized single-crystalline samples of monoclinic BaIrO3 using a molten flux method, and measured their magnetization, resistivity, Seebeck coefficient and nonlinear voltage-current characteristics. The magnetization rapidly increases below a ferromagnetic transition temperature TC of 180 K, where the resistivity concomitantly shows a hump-type anomaly, followed by a sharp increase below 30 K. The Seebeck coefficient suddenly increases below TC, and shows linear temperature dependence below 50 K. A most striking feature of this compound is that the anomalously giant nonlinear conduction is observed below 30 K, where a small current density of 20 A/cm2 dramatically suppresses the sharp increase in resistivity to induce a metallic conduction down to 4 K.Comment: 10 pages, 4 figures Submitted to Physical Review Letter

    Comments on differential cross section of phi-meson photoproduction at threshold

    Get PDF
    We show that the differential cross section d_sigma/d_t of gamma p --> \phi p reaction at the threshold is finite and its value is crucial to the mechanism of the phi meson photoproduction and for the models of phi-N interaction.Comment: 8 pages, 2 figure

    Finite-temperature phase structures of hard-core bosons in an optical lattice with an effective magnetic field

    Full text link
    We study finite-temperature phase structures of hard-core bosons in a two-dimensional optical lattice subject to an effective magnetic field by employing the gauged CP1^1 model. Based on the extensive Monte Carlo simulations, we study their phase structures at finite temperatures for several values of the magnetic flux per plaquette of the lattice and mean particle density. Despite the presence of the particle number fluctuation, the thermodynamic properties are qualitatively similar to those of the frustrated XY model with only the phase as a dynamical variable. This suggests that cold atom simulators of the frustrated XY model are available irrespective of the particle filling at each site.Comment: 13 pages, 9 figure

    The 1953 Cosmic Ray Conference at Bagneres de Bigorre

    Full text link
    The cosmic ray conference at Bagn`eres de Bigorre in July, 1953 organized by Patrick Blackett and Louis Leprince-Ringuet was a seminal one. It marked the beginning of sub atomic physics and its shift from cosmic ray research to research at the new high energy accelerators. The knowledge of the heavy unstable particles found in the cosmic rays was essentially correct in fact and interpretation and defined the experiments that needed to be carried out with the new accelerators. A large fraction of the physicists who had been using cosmic rays for their research moved to the accelerators. This conference can be placed in importance in the same category as two other famous conferences, the Solvay congress of 1927 and the Shelter Island Conference of 1948

    A Spherical Model for "Starless" Cores of Magnetic Molecular Clouds and Dynamical Effects of Dust Grains

    Get PDF
    In the standard picture of isolated star formation, dense ``starless'' cores are formed out of magnetic molecular clouds due to ambipolar diffusion. Under the simplest spherical geometry, I demonstrate that ``starless'' cores formed this way naturally exhibit a large scale inward motion, whose size and speed are comparable to those detected recently by Taffala et al. and Williams et al. in ``starless'' core L1544. My model clouds have a relatively low mass (of order 10 MM_\odot) and low field strength (of order 10 μ\muG) to begin with. They evolve into a density profile with a central plateau surrounded by a power-law envelope, as found previously. The density in the envelope decreases with radius more steeply than those found by Mouschovias and collaborators for the more strongly magnetized, disk-like clouds. At high enough densities, dust grains become dynamically important by greatly enhancing the coupling between magnetic field and the neutral cloud matter. The trapping of magnetic flux associated with the enhanced coupling leads, in the spherical geometry, to a rapid assemblage of mass by the central protostar, which exacerbates the so-called ``luminosity problem'' in star formation.Comment: 27 pages, 4 figures, accepted by Ap

    Compressional properties of nuclear matter in the relativistic mean field theory with the excluded volume effects

    Get PDF
    Compressional properties of nuclear matter are studied by using the mean field theory with the excluded volume effects of the nucleons. It is found that the excluded volume effects make it possible to fit the empirical data of the Coulomb coefficient KcK_{c} of nucleus incompressibility, even if the volume coefficient KK is small(150\sim 150MeV). However, the symmetry properties favor K=300±50K=300\pm 50MeV as in the cases of the mean field theory of point-like nucleons.Comment: PACS numbers, 21.65.+f, 21.30.+

    Antiproton Production in p+d Reaction at Subthreshold Energies

    Get PDF
    An enhancement of antiprotons produced in p+d reaction in comparison with ones in p+p elementary reaction is investigated. In the neighborhood of subthreshold energy the enhancement is caused by the difference of available energies for antiproton production. The cross section in p+d reaction, on the other hand, becomes just twice of the one in elementary p+p reaction at the incident energy far from the threshold energy when non-nucleonic components in deuteron target are not considered.Comment: LaTeX,7 pages with 5 eps figure

    Volume, Coulomb, and volume-symmetry coefficients of nucleus incompressibility in the relativistic mean field theory with the excluded volume effects

    Full text link
    The relation among the volume coefficient KK(=incompressibility of the nuclear matter), the Coulomb coefficient KcK_c, and the volume-symmetry coefficient KvsK_{vs} of the nucleus incompressibility are studied in the framework of the relativistic mean field theory with the excluded volume effects of the nucleons, under the assumption of the scaling model. It is found that K=300±50K= 300\pm 50MeV is necessary to account for the empirical values of KK, KcK_c, and KvsK_{vs}, simultaneously, as is in the case of the point-like nucleons. The result is independent on the detail descriptions of the potential of the σ\sigma-meson self-interaction and is almost independent on the excluded volume of the nucleons.Comment: PACS numbers, 21.65.+f, 21.30.+
    corecore