5 research outputs found

    A skin cancer prevention facial-aging mobile app for secondary schools in Brazil : appearance-focused interventional study.

    Get PDF
    Background: The incidence of melanoma is increasing faster than any other major cancer both in Brazil and worldwide. Southeast Brazil has especially high incidences of melanoma, and early detection is low. Exposure to ultraviolet (UV) radiation is a primary risk factor for developing melanoma. Increasing attractiveness is a major motivation among adolescents for tanning. A medical student-delivered intervention that takes advantage of the broad availability of mobile phones and adolescents? interest in their appearance indicated effectiveness in a recent study from Germany. However, the effect in a high-UV index country with a high melanoma prevalence and the capability of medical students to implement such an intervention remain unknown. Objective: In this pilot study, our objective was to investigate the preliminary success and implementability of a photoaging intervention to prevent skin cancer in Brazilian adolescents. Methods: We implemented a free photoaging mobile phone app (Sunface) in 15 secondary school classes in southeast Brazil. Medical students ?mirrored? the pupils? altered 3-dimensional (3D) selfies reacting to touch on tablets via a projector in front of their whole grade accompanied by a brief discussion of means of UV protection. An anonymous questionnaire capturing sociodemographic data and risk factors for melanoma measured the perceptions of the intervention on 5-point Likert scales among 356 pupils of both sexes (13-19 years old; median age 16 years) in grades 8 to 12 of 2 secondary schools in Brazil. Results: We measured more than 90% agreement in both items that measured motivation to reduce UV exposure and only 5.6% disagreement: 322 (90.5%) agreed or strongly agreed that their 3D selfie motivated them to avoid using a tanning bed, and 321 (90.2%) that it motivated them to improve their sun protection; 20 pupils (5.6%) disagreed with both items. The perceived effect on motivation was higher in female pupils in both tanning bed avoidance (n=198, 92.6% agreement in females vs n=123, 87.2% agreement in males) and increased use of sun protection (n=197, 92.1% agreement in females vs n=123, 87.2% agreement in males) and independent of age or skin type. All medical students involved filled in a process evaluation revealing that they all perceived the intervention as effective and unproblematic, and that all pupils tried the app in their presence. Conclusions: The photoaging intervention was effective in changing behavioral predictors for UV protection in Brazilian adolescents. The predictors measured indicated an even higher prospective effectiveness in southeast Brazil than in Germany (>90% agreement in Brazil vs >60% agreement in Germany to both items that measured motivation to reduce UV exposure) in accordance with the theory of planned behavior. Medical students are capable of complete implementation. A randomized controlled trial measuring prospective effects in Brazil is planned as a result of this study

    Gaseous Reduction Model for Sinter in Consideration of Calcium Ferrite Reaction Process (Unreacted-core Shrinking Model for Six Interfaces)

    No full text
    Reducible oxides containing iron in iron ore sinter are hematite, magnetite and quaternary calcium ferrite (abbreviated by CF), which is the complex crystalline mineral produced from Fe2O3, CaO, SiO2 and Al2O3. Equilibrium diagram for CF reduction with CO?CO2 gas mixture is a little but significantly different from the one for pure iron oxides. In previous analyses for reduction reaction of iron oxides in a blast furnace, however, sinter has been treated as pure iron oxides; existence of CF has been ignored. Reduction steps for CF can be written as CF(= ?Fe2O3?) ?Fe3O4? ?FeO? ?Fe?, which are much the same as pure iron oxides, where ?Fe2O3?, ?Fe3O4?, ?FeO? and ?Fe? designate hematite, magnetite, wustite and iron stages of CF, respectively. However, a reported variation of gas composition with temperature measured in a blast furnace shows that the gas composition in the thermal reserve zone is a little higher than the wustite/iron equilibrium, the reduction potential of which is less than that of ?FeO?/?Fe? equilibrium and hence ?FeO? cannot be reduced to ?Fe?. In the present work, therefore, gaseous reduction model for sinter is developed in consideration of CF reaction process; unreacted-core shrinking model for six interfaces is proposed to take into account reaction processes of CF as well as pure iron oxides. Trial comparison of the calculated reduction curve with our previously reported experimental data under simulated blast furnace conditions shows rather good agreement

    Gaseous reduction model for sinter in consideration of calcium ferrite reaction process (unreacted-core shrinking model for six interfaces).

    No full text
    Reducible oxides containing iron in iron ore sinter are hematite, magnetite and quaternary calcium ferrite (abbreviated by CF), which is the complex crystalline mineral produced from Fe2O3, CaO, SiO2 and Al2O3. Equilibrium diagram for CF reduction with CO?CO2 gas mixture is a little but significantly different from the one for pure iron oxides. In previous analyses for reduction reaction of iron oxides in a blast furnace, however, sinter has been treated as pure iron oxides; existence of CF has been ignored. Reduction steps for CF can be written as CF(= ?Fe2O3?) ?Fe3O4? ?FeO? ?Fe?, which are much the same as pure iron oxides, where ?Fe2O3?, ?Fe3O4?, ?FeO? and ?Fe? designate hematite, magnetite, wustite and iron stages of CF, respectively. However, a reported variation of gas composition with temperature measured in a blast furnace shows that the gas composition in the thermal reserve zone is a little higher than the wustite/iron equilibrium, the reduction potential of which is less than that of ?FeO?/?Fe? equilibrium and hence ?FeO? cannot be reduced to ?Fe?. In the present work, therefore, gaseous reduction model for sinter is developed in consideration of CF reaction process; unreacted-core shrinking model for six interfaces is proposed to take into account reaction processes of CF as well as pure iron oxides. Trial comparison of the calculated reduction curve with our previously reported experimental data under simulated blast furnace conditions shows rather good agreement

    Bottom-up design of peptide nanoshapes in water using oligomers of N-methyl-L/D-alanine

    No full text
    De novo design of peptide nanoshapes is of great interest in biomolecular science since the local peptide nanoshapes formed by a short peptide chain in the proteins are often key to the biological activities. Here, we show that the de novo design of peptide nanoshapes with sub-nanometer conformational control can be realized using peptides consisting of N-methyl-L-alanine and N-methyl-D-alanine residues as studied by NMR, X-ray and XFEL crystallographic and computational analyses as well as by direct imaging of the dynamics of the peptide’s nanoshape using cinematographic electron microscopic technique. The conformation of N-methyl-L/D-alanine residue is largely fixed because of the restricted bond rotation, and hence can serve as a scaffold on which we can build a peptide into a designed nanoshape. The local shape control by per-residue conformational restriction by torsional strains starkly contrasts with the global shape stabilization of proteins based on many remote interactions. The oligomers allow the bottom-up design of diverse peptide nanoshapes with a small number of amino acid residues and would offer unique opportunities to realize the de novo design of biofunctional molecules, such as catalysts and drugs
    corecore