589 research outputs found

    Online Update of Safety Assurances Using Confidence-Based Predictions

    Full text link
    Robots such as autonomous vehicles and assistive manipulators are increasingly operating in dynamic environments and close physical proximity to people. In such scenarios, the robot can leverage a human motion predictor to predict their future states and plan safe and efficient trajectories. However, no model is ever perfect -- when the observed human behavior deviates from the model predictions, the robot might plan unsafe maneuvers. Recent works have explored maintaining a confidence parameter in the human model to overcome this challenge, wherein the predicted human actions are tempered online based on the likelihood of the observed human action under the prediction model. This has opened up a new research challenge, i.e., \textit{how to compute the future human states online as the confidence parameter changes?} In this work, we propose a Hamilton-Jacobi (HJ) reachability-based approach to overcome this challenge. Treating the confidence parameter as a virtual state in the system, we compute a parameter-conditioned forward reachable tube (FRT) that provides the future human states as a function of the confidence parameter. Online, as the confidence parameter changes, we can simply query the corresponding FRT, and use it to update the robot plan. Computing parameter-conditioned FRT corresponds to an (offline) high-dimensional reachability problem, which we solve by leveraging recent advances in data-driven reachability analysis. Overall, our framework enables online maintenance and updates of safety assurances in human-robot interaction scenarios, even when the human prediction model is incorrect. We demonstrate our approach in several safety-critical autonomous driving scenarios, involving a state-of-the-art deep learning-based prediction model.Comment: 7 pages, 3 figure

    Parameter-Conditioned Reachable Sets for Updating Safety Assurances Online

    Full text link
    Hamilton-Jacobi (HJ) reachability analysis is a powerful tool for analyzing the safety of autonomous systems. However, the provided safety assurances are often predicated on the assumption that once deployed, the system or its environment does not evolve. Online, however, an autonomous system might experience changes in system dynamics, control authority, external disturbances, and/or the surrounding environment, requiring updated safety assurances. Rather than restarting the safety analysis from scratch, which can be time-consuming and often intractable to perform online, we propose to compute \textit{parameter-conditioned} reachable sets. Assuming expected system and environment changes can be parameterized, we treat these parameters as virtual states in the system and leverage recent advances in high-dimensional reachability analysis to solve the corresponding reachability problem offline. This results in a family of reachable sets that is parameterized by the environment and system factors. Online, as these factors change, the system can simply query the corresponding safety function from this family to ensure system safety, enabling a real-time update of the safety assurances. Through various simulation studies, we demonstrate the capability of our approach in maintaining system safety despite the system and environment evolution

    Decentralized Learning With Limited Communications for Multi-robot Coverage of Unknown Spatial Fields

    Full text link
    This paper presents an algorithm for a team of mobile robots to simultaneously learn a spatial field over a domain and spatially distribute themselves to optimally cover it. Drawing from previous approaches that estimate the spatial field through a centralized Gaussian process, this work leverages the spatial structure of the coverage problem and presents a decentralized strategy where samples are aggregated locally by establishing communications through the boundaries of a Voronoi partition. We present an algorithm whereby each robot runs a local Gaussian process calculated from its own measurements and those provided by its Voronoi neighbors, which are incorporated into the individual robot's Gaussian process only if they provide sufficiently novel information. The performance of the algorithm is evaluated in simulation and compared with centralized approaches.Comment: Accepted IROS 202

    Generative Adversarial Networks via a Composite Annealing of Noise and Diffusion

    Full text link
    Generative adversarial network (GAN) is a framework for generating fake data using a set of real examples. However, GAN is unstable in the training stage. In order to stabilize GANs, the noise injection has been used to enlarge the overlap of the real and fake distributions at the cost of increasing variance. The diffusion (or smoothing) may reduce the intrinsic underlying dimensionality of data but it suppresses the capability of GANs to learn high-frequency information in the training procedure. Based on these observations, we propose a data representation for the GAN training, called noisy scale-space (NSS), that recursively applies the smoothing with a balanced noise to data in order to replace the high-frequency information by random data, leading to a coarse-to-fine training of GANs. We experiment with NSS using DCGAN and StyleGAN2 based on benchmark datasets in which the NSS-based GANs outperforms the state-of-the-arts in most cases

    Demonstration of geometric diabatic control of quantum states

    Full text link
    Geometric effects can play a pivotal role in streamlining quantum manipulation. We demonstrate a geometric diabatic control, that is, perfect tunneling between spin states in a diamond by a quadratic sweep of a driving field. The field sweep speed for the perfect tunneling is determined by the geometric amplitude factor and can be tuned arbitrarily. Our results are obtained by testing a quadratic version of Berry's twisted Landau-Zener model. This geometric tuning is robust over a wide parameter range. Our work provides a basis for quantum control in various systems, including condensed matter physics, quantum computation, and nuclear magnetic resonance
    • …
    corecore