495 research outputs found

    Estimating the hourly electricity profile of Japanese households – Coupling of engineering and statistical methods

    Get PDF
    AbstractUnderstanding the hourly electricity profile and the electricity consumption by each appliance is essential for encouraging energy-saving measures in the household sector. There are two methods for identifying energy consumption for households in existing studies: the engineering and the statistical methods. Both methods have strengths and limitations. In this study, we developed a hybrid method based on the statistical method by combining following three steps using knowledge of the engineering method; externalizing the electricity consumption for the refrigerator, adding the number of at-home-and-awake members as explanatory variables, and restricting appliance usage hours. The proposed hybrid method could adequately reproduce the total hourly electricity consumption and seasonal variation compared to the engineering method, and could decompose major appliances, some of which that were not disaggregated by the statistical method. For the quantitative analysis of the model improvement, we calculated Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) for each method with direct metering data. For most of appliances, RMSE and MAE of hybrid model were improved from 11% to 71% compared to the existing methods. The collection of more samples to increase the accuracy of the estimation and application to areas of low statistical data availability are future steps

    Fabrication method of Yb based Oxide matrix for CMC

    Get PDF
    Please click Additional Files below to see the full abstrac

    Advances and technical challenges in development of CMC

    Get PDF
    Please click Additional Files below to see the full abstract

    Closed-cycle cold helium magic-angle spinning for sensitivity-enhanced multi-dimensional solid-state NMR

    Get PDF
    AbstractMagic-angle spinning (MAS) NMR is a powerful tool for studying molecular structure and dynamics, but suffers from its low sensitivity. Here, we developed a novel helium-cooling MAS NMR probe system adopting a closed-loop gas recirculation mechanism. In addition to the sensitivity gain due to low temperature, the present system has enabled highly stable MAS (vR=4–12kHz) at cryogenic temperatures (T=35–120K) for over a week without consuming helium at a cost for electricity of 16kW/h. High-resolution 1D and 2D data were recorded for a crystalline tri-peptide sample at T=40K and B0=16.4T, where an order of magnitude of sensitivity gain was demonstrated versus room temperature measurement. The low-cost and long-term stable MAS strongly promotes broader application of the brute-force sensitivity-enhanced multi-dimensional MAS NMR, as well as dynamic nuclear polarization (DNP)-enhanced NMR in a temperature range lower than 100K

    Frequency Distribution of Intense Rainfall in the Wards of Tokyo and Its Relationship with the Spatial Structure of Building Heights

    Get PDF
    This study presents the minute spatial structure of both the frequency of intense rainfall (data from the 1991 to 2002, except 1993, were used) and recent trends (15-25 years until 2002) in the special wards of the Tokyo Metropolis in summer (June to September), on the basis of hourly rainfall data from a dense rain-gauge network. As this is the first step in elucidating the relationship between the distribution of the frequency of intense rainfall and that of surface roughness in metropolitan Tokyo, the averaged number of building stories within a certain area, which is referred to as the smoothed building height (SBH), was assumed to be an alternative parameter when deciding surface roughness. The distribution of the ascending rate of SBH (hereafter, the ascending rate of SBH is referred to as ARS) for wind direction was calculated by varying the averaging area for SBH, in order to compare it to the distribution of intense rainfall frequency. The results are summarized as follows. The high-frequency areas of intense rainfall appear in the western to northern parts of the area comprising the wards and along the boundary between the Tokyo Metropolis and SaitamaPrefecture. The frequency of intense rainfall in these areas is two to three times as high as that in the eastern part of the area comprising the wards. Moreover, the maximum areas of intense rainfall frequency are localized in the western, northern to northwestern, and southern part of the area comprising the wards, corresponding to wind direction. These areas are situated 3-5 km from the leeward side of the area, where the ARS derived from the SBH at a 1-2 km scale islarge, that is, the vicinities of Shinjuku (SNJ), Ikebukuro (1KB), and Shibuya (SBY). Accordingly, we suggest that the large surface roughness due to high-rise buildings in the western part of the area comprising the wards has the effect of increasing the frequency of intense rainfall. The increasing trend of intense rainfall is clear in the western part of the area comprising the wards, whereas a decreasing trend, although not statistically significant, is seen in the eastern part of the area comprising the wards. It is noted that observational stations with large increasing trends of intense rainfall, such as Nakano (NKN) and Shinagawa (SNG), are located 3-5 km from the leeward side of SNJ and on the shore of Tokyo Bay in the southern part of the area comprising the wards, respectively, where the ARS for easterly winds derived from the SBH at a 1-2 km scale is large

    Discovery of antiferromagnetic chiral helical ordered state in trigonal GdNi3_3Ga9_9

    Full text link
    We have performed magnetic susceptibility, magnetization, and specific heat measurements on a chiral magnet GdNi3_3Ga9_9, belonging to the trigonal space group R32R32 (\#155). A magnetic phase transition takes place at TNT_{\rm N} = 19.5 K. By applying a magnetic field along the aa axis at 2 K, the magnetization curve exhibits two jumps at \sim 3 kOe and = 45 kOe. To determine the magnetic structure, we performed a resonant X-ray diffraction experiment by utilizing a circularly polarized beam. It is shown that a long-period antiferromagnetic (AFM) helical order is realized at zero field. The Gd spins in the honeycomb layer are coupled in an antiferromagnetic manner in the cc plane and rotate with a propagation vector qq = (0, 0, 1.485). The period of the helix is 66.7 unit cells (180\sim 180~nm). In magnetic fields above 3~kOe applied perpendicular to the helical cc axis, the AFM helical order changes to an AFM order with qq = (0, 0, 1.5).Comment: 7 pages, 12 figure

    Experimental Determination of Bose-Hubbard Energies

    Get PDF
    We present the first experimental measurement of the ensemble averages of both the kinetic and interaction energies of the three-dimensional Bose--Hubbard model at finite temperature and various optical lattice depths across weakly to strongly interacting regimes, for an almost unit filling factor. The kinetic energy is obtained through Fourier transformation of a time-of-flight signal, and the interaction energy is measured using a newly developed atom-number-projection spectroscopy technique, by exploiting an ultra-narrow optical transition of two-electron atoms. The obtained experimental results can be used as benchmarks for state-of-the-art numerical methods of quantum many-body theory. As an illustrative example, we compare the measured energies with numerical calculations involving the Gutzwiller and cluster-Gutzwiller approximations, assuming realistic trap potentials and particle numbers at nonzero entropy (finite temperature); we obtain good agreement without fitting parameters. We also discuss the possible application of this method to temperature estimations for atoms in optical lattices using the thermodynamic relation. This study offers a unique advantage of cold atom system for `quantum simulators', because, to the best of our knowledge, it is the first experimental determination of both the kinetic and interaction energies of quantum many-body system.Comment: 22 pages, 20 figure

    Adenosine triphosphate induces amorphous aggregation of amyloid β by increasing Aβ dynamics

    Get PDF
    アルツハイマー病に関係するアミロイドβ1分子の凝集動態を観察. 京都大学プレスリリース. 2024-04-23.Amyloid β (Aβ) aggregates into two distinct fibril and amorphous forms in the brains of patients with Alzheimer’s disease. Adenosine triphosphate (ATP) is a biological hydrotrope that causes Aβ to form amorphous aggregates and inhibit fibril formation at physiological concentrations. Based on diffracted X-ray blinking (DXB) analysis, the dynamics of Aβ significantly increased immediately after ATP was added compared to those in the absence and presence of ADP and AMP, and the effect diminished after 30 min as the aggregates formed. In the presence of ATP, the β-sheet content of Aβ gradually increased from the beginning, and in the absence of ATP, the content increased rapidly after 180 min incubation, as revealed by a time-dependent thioflavin T fluorescence assay. Images of an atomic force microscope revealed that ATP induces the formation of amorphous aggregates with an average diameter of less than 100 nm, preventing fibrillar formation during 4 days of incubation at 37℃. ATP may induce amorphous aggregation by increasing the dynamics of Aβ, and as a result, the other aggregation pathway is omitted. Our results also suggest that DXB analysis is a useful method to evaluate the inhibitory effect of fibrillar formation

    Active Initialization Experiment of Superconducting Qubit Using Quantum-circuit Refrigerator

    Full text link
    The initialization of superconducting qubits is one of the essential techniques for the realization of quantum computation. In previous research, initialization above 99\% fidelity has been achieved at 280 ns. Here, we demonstrate the rapid initialization of a superconducting qubit with a quantum-circuit refrigerator (QCR). Photon-assisted tunneling of quasiparticles in the QCR can temporally increase the relaxation time of photons inside the resonator and helps release energy from the qubit to the environment. Experiments using this protocol have shown that 99\% of initialization time is reduced to 180 ns. This initialization time depends strongly on the relaxation rate of the resonator, and faster initialization is possible by reducing the resistance of the QCR, which limits the ON/OFF ratio, and by strengthening the coupling between the QCR and the resonator
    corecore