176 research outputs found

    顆粒空胞変性の分子マーカーは縁取り空胞にも存在する

    Get PDF
    内容の要約広島大学(Hiroshima University)博士(医学)Philosophy in Medical Sciencedoctora

    Abeta Is Internalized via Macropinocytosis

    Get PDF
    Intracellular amyloid β peptide (Aβ) accumulation has drawn attention in relation to the pathophysiology of Alzheimer’s disease in addition to its extracellular deposition as senile plaque. Cellular uptake of extracellular Aβ is one of the possible mechanisms by which intracellular Aβ deposits form. Given the relevance of Aβ inside cells, it is important to understand the mechanism by which it is taken up by them. In this study, we elucidated that Neuro2A and SH-SY5Y cells internalize specifically oligomerized Aβ in a time- and dose-dependent manner. The depletion of plasma membrane cholesterol with methyl-β-cyclodextrin or treatment with trypsin diminished the internalization of oAβ, suggesting that the oAβ uptake might be both a lipid raft-dependent and heparan sulfate proteoglycan-mediated process. Treatment with a macropinocytosis inhibitor (ethylisopropyl amiloride and wortmannin) also drastically reduced the uptake of oligomer-Aβ (oAβ). oAβ-treated cells exhibited an increase in Rac1 activity, indicating that macropinocytosis induced by oAβ is regulated by these small GTPases. These findings suggest that macropinocytosis is a major endocytic route through which oAβ42 enters cells

    Myosin motor Myo1c and its receptor NEMO/IKK-γ promote TNF-α–induced serine307 phosphorylation of IRS-1

    Get PDF
    Tumor necrosis factor-α (TNF-α) signaling through the IκB kinase (IKK) complex attenuates insulin action via the phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser307. However, the precise molecular mechanism by which the IKK complex phosphorylates IRS-1 is unknown. In this study, we report nuclear factor κB essential modulator (NEMO)/IKK-γ subunit accumulation in membrane ruffles followed by an interaction with IRS-1. This intracellular trafficking of NEMO requires insulin, an intact actin cytoskeletal network, and the motor protein Myo1c. Increased Myo1c expression enhanced the NEMO–IRS-1 interaction, which is essential for TNF-α– induced phosphorylation of Ser307–IRS-1. In contrast, dominant inhibitory Myo1c cargo domain expression diminished this interaction and inhibited IRS-1 phosphorylation. NEMO expression also enhanced TNF-α–induced Ser307–IRS-1 phosphorylation and inhibited glucose uptake. In contrast, a deletion mutant of NEMO lacking the IKK-β–binding domain or silencing NEMO blocked the TNF-α signal. Thus, motor protein Myo1c and its receptor protein NEMO act cooperatively to form the IKK–IRS-1 complex and function in TNF-α–induced insulin resistance

    Case report: Mitochondrial trifunctional protein deficiency caused by HADHB gene mutation (c.1175C>T) characterized by higher brain dysfunction followed by neuropathy, presented gadolinium enhancement on brain imaging in an adult patient

    Get PDF
    Mitochondrial trifunctional protein (MTP) deficiency is an autosomal recessive disorder caused by impaired metabolism of long-chain fatty acids (LCFAs). Childhood and late-onset MTP deficiency is characterized by myopathy/rhabdomyolysis and peripheral neuropathy; however, the features are unclear. A 44-year-old woman was clinically diagnosed with Charcot-Marie-Tooth disease at 3 years of age due to gait disturbance. Her activity and voluntary speech gradually decreased in her 40s. Cognitive function was evaluated and brain imaging tests were performed. The Mini-Mental State Examination and frontal assessment battery scores were 25/30 and 10/18, respectively, suggesting higher brain dysfunction. Peripheral nerve conduction studies revealed axonal impairments. Brain computed tomography showed significant calcification. Magnetic resonance imaging revealed an increased gadolinium contrast-enhanced signal in the white matter, suggesting demyelination of the central nervous system (CNS) due to LCFAs. The diagnosis of MTP deficiency was confirmed through genetic examination. Administration of L-carnitine and a medium-chain fatty triglyceride diet was initiated, and the progression of higher brain dysfunction was retarded within 1 year. This patient's presentation was suggestive of CNS demyelination. The presence of brain calcification, higher brain dysfunction, or gadolinium enhancement in the white matter in patients with peripheral neuropathy may be suggestive of MTP deficiency

    Hydrogen Isotope (H2 and D2) Sorption Study of CHA-Type Zeolites

    Get PDF
    Using either single H2 and D2 or H2-D2 mixed gases, the sorption abilities of CHA (chabazite)-type zeolites ion-exchanged with K, Na, or Ca were studied at 77, 201, and 250 K. The LTA (Linde Type A) (3A) and FAU (faujasite)-type zeolites were also examined for comparison. The pore diameters in these materials were found to decrease on the order of FAU > Ca-CHA > [K-CHA, Na-CHA, and LTA(3A)]. The quantities of D2 adsorbed on these zeolites were larger than the amounts of H2. At higher temperatures, the CHA-type zeolites having smaller pores exhibited superior D2/H2 selectivity compared with the LTA(3A) and FAU, suggesting that hydrogen isotope separation using zeolites is affected by pore size

    Development of the photomultiplier tube readout system for the first Large-Sized Telescope of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is the next generation ground-based very high energy gamma-ray observatory. The Large-Sized Telescope (LST) of CTA targets 20 GeV -- 1 TeV gamma rays and has 1855 photomultiplier tubes (PMTs) installed in the focal plane camera. With the 23 m mirror dish, the night sky background (NSB) rate amounts to several hundreds MHz per pixel. In order to record clean images of gamma-ray showers with minimal NSB contamination, a fast sampling of the signal waveform is required so that the signal integration time can be as short as the Cherenkov light flash duration (a few ns). We have developed a readout board which samples waveforms of seven PMTs per board at a GHz rate. Since a GHz FADC has a high power consumption, leading to large heat dissipation, we adopted the analog memory ASIC "DRS4". The sampler has 1024 capacitors per channel and can sample the waveform at a GHz rate. Four channels of a chip are cascaded to obtain deeper sampling depth with 4096 capacitors. After a trigger is generated in a mezzanine on the board, the waveform stored in the capacitor array is subsequently digitized with a low speed (33 MHz) ADC and transferred via the FPGA-based Gigabit Ethernet to a data acquisition system. Both a low power consumption (2.64 W per channel) and high speed sampling with a bandwidth of >>300 MHz have been achieved. In addition, in order to increase the dynamic range of the readout we adopted a two gain system achieving from 0.2 up to 2000 photoelectrons in total. We finalized the board design for the first LST and proceeded to mass production. Performance of produced boards are being checked with a series of quality control (QC) tests. We report the readout board specifications and QC results.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Swallowing sound evaluation using an electronic stethoscope and artificial intelligence analysis for patients with amyotrophic lateral sclerosis

    Get PDF
    Background and purposeNon-invasive, simple, and repetitive swallowing evaluation is required to prevent aspiration pneumonia in neurological care. We investigated the usefulness of swallowing sound evaluation in patients with amyotrophic lateral sclerosis (ALS) using our new electronic stethoscope artificial intelligence (AI) analysis tool.MethodsWe studied patients with ALS who provided written informed consent. We used an electronic stethoscope, placed a Bluetooth-enabled electronic stethoscope on the upper end of the sternum, performed a 3-mL water swallow three times, and remotely identified the intermittent sound components of the water flow caused at that time by AI, with the maximum value as the swallowing sound index. We examined the correlation between the swallowing sound index and patient background, including swallowing-related parameters.ResultsWe evaluated 24 patients with ALS (age 64.0 ± 11.8 years, 13 women, median duration of illness 17.5 months). The median ALS Functional Rating Scale-Revised (ALSFRS-R) score was 41 (minimum 18, maximum 47). In all cases, the mean swallowing sound index was 0.209 ± 0.088. A multivariate analysis showed that a decrease in the swallowing sound index was significantly associated with a low ALSFRS-R score, an ALSFRS-R bulbar symptom score, % vital capacity, tongue pressure, a Mann Assessment of Swallowing Ability (MASA) score, and a MASA pharyngeal phase-related score.ConclusionSwallowing sound evaluation using an electronic stethoscope AI analysis showed a correlation with existing indicators in swallowing evaluation in ALS and suggested its usefulness as a new method. This is expected to be a useful examination method in home and remote medical care

    Tricholoma matsutake 1-Ocen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta)

    Get PDF
    Two major volatiles produced by the mycelia and fruiting bodies of Tricholoma matsutake (1-octen-3-ol and methyl cinnamate) repel a mycophagous collembolan, Proisotoma minuta. Aggregation of the collembolans on their diet was significantly inhibited by exposure to 1 ppm methyl cinnamate or 10 to 100 ppm 1-octen-3-ol. The aggregation activity decreased dose-dependently upon exposure to 1-octen-3-ol at concentrations higher than 0.01 ppm. Aggregation in the presence of methyl cinnamate exhibited three phases: no significant effect at concentrations ranging from 0.001 to 0.1 ppm, significant inhibition from 1 to 100 ppm, and strong inhibition at 1,000 ppm. These results may explain why certain collembolan species do not prefer T. matsutake fruiting bodies
    corecore