273 research outputs found
Two different classes of co-occurring motif pairs found by a novel visualization method in human promoter regions
<p>Abstract</p> <p>Background</p> <p>It is essential in modern biology to understand how transcriptional regulatory regions are composed of <it>cis</it>-elements, yet we have limited knowledge of, for example, the combinational uses of these elements and their positional distribution.</p> <p>Results</p> <p>We predicted the positions of 228 known binding motifs for transcription factors in phylogenetically conserved regions within -2000 and +1000 bp of transcriptional start sites (TSSs) of human genes and visualized their correlated non-overlapping occurrences. In the 8,454 significantly correlated motif pairs, two major classes were observed: 248 pairs in Class 1 were mainly found around TSSs, whereas 4,020 Class 2 pairs appear at rather arbitrary distances from TSSs. These classes are distinct in a number of aspects. First, the positional distribution of the Class 1 constituent motifs shows a single peak near the TSSs, whereas Class 2 motifs show a relatively broad distribution. Second, genes that harbor the Class 1 pairs are more likely to be CpG-rich and to be expressed ubiquitously than those that harbor Class 2 pairs. Third, the 'hub' motifs, which are used in many different motif pairs, are different between the two classes. In addition, many of the transcription factors that correspond to the Class 2 hub motifs contain domains rich in specific amino acids; these domains may form disordered regions important for protein-protein interaction.</p> <p>Conclusion</p> <p>There exist at least two classes of motif pairs with respect to TSSs in human promoters, possibly reflecting compositional differences between promoters and enhancers. We anticipate that our visualization method may be useful for the further characterisation of promoters.</p
Weak correlation between sequence conservation in promoter regions and in protein-coding regions of human-mouse orthologous gene pairs
<p>Abstract</p> <p>Background</p> <p>Interspecies sequence comparison is a powerful tool to extract functional or evolutionary information from the genomes of organisms. A number of studies have compared protein sequences or promoter sequences between mammals, which provided many insights into genomics. However, the correlation between protein conservation and promoter conservation remains controversial.</p> <p>Results</p> <p>We examined promoter conservation as well as protein conservation for 6,901 human and mouse orthologous genes, and observed a very weak correlation between them. We further investigated their relationship by decomposing it based on functional categories, and identified categories with significant tendencies. Remarkably, the 'ribosome' category showed significantly low promoter conservation, despite its high protein conservation, and the 'extracellular matrix' category showed significantly high promoter conservation, in spite of its low protein conservation.</p> <p>Conclusion</p> <p>Our results show the relation of gene function to protein conservation and promoter conservation, and revealed that there seem to be nonparallel components between protein and promoter sequence evolution.</p
Effects of Alu elements on global nucleosome positioning in the human genome
<p>Abstract</p> <p>Background</p> <p>Understanding the genome sequence-specific positioning of nucleosomes is essential to understand various cellular processes, such as transcriptional regulation and replication. As a typical example, the 10-bp periodicity of AA/TT and GC dinucleotides has been reported in several species, but it is still unclear whether this feature can be observed in the whole genomes of all eukaryotes.</p> <p>Results</p> <p>With Fourier analysis, we found that this is not the case: 84-bp and 167-bp periodicities are prevalent in primates. The 167-bp periodicity is intriguing because it is almost equal to the sum of the lengths of a nucleosomal unit and its linker region. After masking Alu elements, these periodicities were greatly diminished. Next, using two independent large-scale sets of nucleosome mapping data, we analyzed the distribution of nucleosomes in the vicinity of Alu elements and showed that (1) there are one or two fixed slot(s) for nucleosome positioning within the Alu element and (2) the positioning of neighboring nucleosomes seems to be in phase, more or less, with the presence of Alu elements. Furthermore, (3) these effects of Alu elements on nucleosome positioning are consistent with inactivation of promoter activity in Alu elements.</p> <p>Conclusions</p> <p>Our discoveries suggest that the principle governing nucleosome positioning differs greatly across species and that the Alu family is an important factor in primate genomes.</p
Challenges of the next decade for the Asia Pacific region: 2010 International Conference in Bioinformatics (InCoB 2010)
The 2010 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia’s oldest bioinformatics organisation formed in 1998, was organized as the 9th International Conference on Bioinformatics (InCoB), Sept. 26-28, 2010 in Tokyo, Japan. Initially, APBioNet created InCoB as forum to foster bioinformatics in the Asia Pacific region. Given the growing importance of interdisciplinary research, InCoB2010 included topics targeting scientists in the fields of genomic medicine, immunology and chemoinformatics, supporting translational research. Peer-reviewed manuscripts that were accepted for publication in this supplement, represent key areas of research interests that have emerged in our region. We also highlight some of the current challenges bioinformatics is facing in the Asia Pacific region and conclude our report with the announcement of APBioNet’s 100 BioDatabases (BioDB100) initiative. BioDB100 will comply with the database criteria set out earlier in our proposal for Minimum Information about a Bioinformatics and Investigation (MIABi), setting the standards for biocuration and bioinformatics research, on which we will report at the next InCoB, Nov. 27 – Dec. 2, 2011 at Kuala Lumpur, Malaysia
- …