17 research outputs found

    胎生期の低用量抗菌薬摂取が、子の腸内細菌叢や体脂肪組成に及ぼす影響

    Get PDF
    Several environmental factors during the prenatal period transgenerationally affect the health of newborns in later life. Because low-dose antibiotics have been used for promoting the growth of crops and livestock in agriculture, humans may have ingested residual antibiotics for several decades. However, the effect of prenatal administration of low-dose antibiotics on newborns’ health in later life is unclear. In the present study, we found that prenatal treatment of murine mothers with low-dose antibiotics increased the abundance of bacteria of the phylum Firmicutes and the genera Clostridium IV and XIVa in feces from pups. In addition, the body fat percentage of mice in the antibiotic-treated group was higher than those in the control group at 12 weeks of age even though all pups were fed a standard diet. The body fat percentage of all mice was correlated with the abundance of fecal bacteria of Clostridium IV and XIVa. These results predict that low-dose antibiotic administration during the prenatal period affects the gut microbiota of newborns and possibly their health in later life

    Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice

    Get PDF
    Non-caloric artificial sweeteners (NASs) provide sweet tastes to food without adding calories or glucose. NASs can be used as alternative sweeteners for controlling blood glucose levels and weight gain. Although the consumption of NASs has increased over the past decade in Japan and other countries, whether these sweeteners affect the composition of the gut microbiome is unclear. In the present study, we examined the effects of sucralose or acesulfame-K ingestion (at most the maximum acceptable daily intake (ADI) levels, 15 mg/kg body weight) on the gut microbiome in mice. Consumption of sucralose, but not acesulfame-K, for 8 weeks reduced the relative amount of Clostridium cluster XIVa in feces. Meanwhile, sucralose and acesulfame-K did not increase food intake, body weight gain or liver weight, or fat in the epididymis or cecum. Only sucralose intake increased the concentration of hepatic cholesterol and cholic acid. Moreover, the relative concentration of butyrate and the ratio of secondary/primary bile acids in luminal metabolites increased with sucralose consumption in a dose-dependent manner. These results suggest that daily intake of maximum ADI levels of sucralose, but not acesulfame-K, affected the relative amount of the Clostridium cluster XIVa in fecal microbiome and cholesterol bile acid metabolism in mice

    Role of CFTR in Campylobacter jejuni infection

    Get PDF
    Campylobacter jejuni (C. jejuni) is gastroenteritis inducible food-born pathogen. Invasion and adhesion process are essential for leading gastroenteritis in C. jejuni infection process. As against bacterial strategy for efficacy invasion and adhesion, mucosal layer play a key role in defense systems, which modulated by several ion channels and transporters mediated water flux on the intestine. Cystic fibrosis transmembrane conductance regulator (CFTR) play the main role in waterfulux in intestine, and it closely related with bacterial clearance. We previously reported that C. jejuni infection suppresses CFTR channel activity in intestinal epithelial cells, however the mechanism and importance of this suppression is unclear. This study seeks to elucidate the role of CFTR in C. jejuni-infection. Using HEK293 cells that stably express wild type and mutated CFTR, we found that CFTR attenuated C. jejuni invasion, it was not involved bacterial adhesion or intracellular survival but associated with microtubule-dependent cellular transport. Moreover we revealed that CFTR attenuated function of microtubule motor protein but not microtubule stability, which causes inhibition of C. jejuni-invasion. Meanwhile, the CFTR mutant G551D-CFTR, which has defects in channel activity, suppressed C. jejuni-invasion, whereasΔF508-CFTR, which has defects in maturation, did not suppress, suggesting that CFTR suppression of C. jejuni-invasion is related to CFTR maturation but not channel activity. Taken together, mature CFTR inhibited C. jejuni invasion by regulating microtubule-mediated pathways. We suggest that CFTR plays a critical role in cellular defenses against C. jejuni-invasion, and CFTR suppression may be an initial step in promoting cellular invasion during C. jejuni-infection

    Combined treatment of UVA and antibiotics

    Get PDF
    The presence of antibiotics in the environment and their subsequent impact on the development of multi-antibiotic resistant bacteria has raised concerns globally. Consequently, much research is focused on a method to produce a better disinfectant. We have established a disinfectant system using UVA-LED that inactivates pathogenic bacteria. We assessed the bactericidal efficiency of a combination of UVA-LED and antibiotics against Vibrio parahaemolyticus. Combined use of antibiotic drugs and UVA irradiation was more bactericidal than UVA irradiation or antibacterial drugs alone. The bactericidal synergy was observed at low concentrations of each drug that are normally unable to kill the bacteria. This combination has the potential to become a sterilization technology

    UVA-LED disinfect hydroponic solution

    Get PDF
    The number of plant factories in which crops are cultivated in an artificial environment has been increasing every year. In cultivation techniques involving hydroponics, plants are supplied with a circulating nutrient solution, which can become contaminated by pathogens that can propagate and spread throughout plant factories. Therefore, strategies to disinfect hydroponic nutrient solutions are needed. In this study, we developed a new disinfection device equipped with an ultraviolet A (UVA) light emitting diode (LED) that can be used to disinfect hydroponic nutrient solutions in plant factories. We first evaluated the basic disinfection capability of the device and then estimated its bactericidal effect in a small scale model system. The log survival ratio was related to UVA irradiation fluence and the volume of nutrient solution. From the assay results, we devised a kinetics equation to describe the relationship between nutrient solution volume, log survival ratio, and UVA fluence. Together our results show that UVA irradiation could be used to disinfect hydroponic nutrient solutions, and the derived kinetics equations can be used to determine optimal conditions, such as nutrient solution volume, UVA irradiation, and killing activity, to develop devices that disinfect hydroponic nutrient solutions

    紫外線発光ダイオード照射は宿主細胞内でのウイルスRNAの複製と転写を抑制することでA型インフルエンザウイルスを不活化する

    Get PDF
    Influenza A viruses (IAVs) pose a serious global threat to humans and their livestock, especially poultry and pigs. This study aimed to investigate how to inactivate IAVs by using different ultraviolet-light-emitting diodes (UV-LEDs). We developed sterilization equipment with light-emitting diodes (LEDs) those peak wavelengths were 365 nm (UVA-LED), 310 nm (UVB-LED), and 280 nm (UVC-LED). These UV-LED irradiations decreased dose fluence-dependent plaque-forming units of IAV H1N1 subtype (A/Puerto Rico/8/1934) infected Madin-Darby canine kidney (MDCK) cells, but the inactivation efficiency of UVA-LED was significantly lower than UVB- and UVC-LED. UV-LED irradiations did not alter hemagglutination titer, but decreased accumulation of intracellular total viral RNA in infected MDCK cells was observed. Additionally, UV-LED irradiations suppressed the accumulation of intracellular mRNA (messenger RNA), vRNA (viral RNA), and cRNA (complementary RNA), as measured by strand-specific RT-PCR. These results suggest that UV-LEDs inhibit host cell replication and transcription of viral RNA. Both UVB- and UVC-LED irradiation decreased focus-forming unit (FFU) of H5N1 subtype (A/Crow/Kyoto/53/2004), a highly pathogenic avian IAV (HPAI), in infected MDCK cells, and the amount of FFU were lower than the H1N1 subtype. From these results, it appears that IAVs may have different sensitivity among the subtypes, and UVB- and UVC-LED may be suitable for HPAI virus inactivation

    タイトジャンクションは極性化上皮細胞においてCampylobacter jejuniの細胞側面からの効率的な侵入を妨げ炎症によるバリアの破綻は菌の侵入を促進する

    Get PDF
    Campylobacter jejuni invasion is closely related to C. jejuni pathogenicity. The intestinal epithelium contains polarized epithelial cells that form tight junctions (TJs) to provide a physical barrier against bacterial invasion. Previous studies indicated that C. jejuni invasion of non-polarized cells involves several cellular features, including lipid rafts. However, the dynamics of C. jejuni invasion of polarized epithelial cells are not fully understood. Here we investigated the interaction between C. jejuni invasion and TJ formation to characterize the mechanism of C. jejuni invasion in polarized epithelial cells. In contrast to non-polarized epithelial cells, C. jejuni invasion was not affected by depletion of lipid rafts in polarized epithelial cells. However, depletion of lipid rafts significantly decreased C. jejuni invasion in TJ disrupted cells or basolateral infection and repair of cellular TJs suppressed lipid raft-mediated C. jejuni invasion in polarized epithelial cells. In addition, pro-inflammatory cytokine, TNF-a treatment that induce TJ disruption promote C. jejuni invasion and lipid rafts depletion significantly reduced C. jejuni invasion in TNF-a treated cells. These data demonstrated that TJs prevent C. jejuni invasion from the lateral side of epithelial cells, where they play a main part in bacterial invasion and suggest that C. jejuni invasion could be increased in inflammatory condition. Therefore, maintenance of TJs integrity should be considered important in the development of novel therapies for C. jejuni infection

    Infection risk in hemodialysis patient

    Get PDF
    Chronic care patients undergoing hemodialysis for treatment of end-stage renal failure experience higher rates of bloodstream-associated infection due to the patients' compromised immune system and management of the bloodstream through catheters. Staphylococcus species are a common cause of hemodialysis catheter-related bloodstream infections. We investigated environmental bacterial contamination of dialysis wards and contamination of hemodialysis devices to determine the source of bacteria for these infections. All bacterial samples were collected by the swab method and the agarose stamp method. And which bacterium were identified by BBL CRYSTAL Kit or 16s rRNA sequences. In our data, bacterial cell number of hemodialysis device was lower than environment of patient surrounds. But Staphylococcus spp. were found predominantly on the hemodialysis device (46.8%), especially on areas frequently touched by healthcare-workers (such as Touch screen). Among Staphylococcus spp., Staphylococcus epidermidis was most frequently observed (42.1% of Staphylococcus spp.), and more surprising, 48.2% of the Staphylococcus spp. indicated high resistance for methicillin. Our finding suggests that hemodialysis device highly contaminated with bloodstream infection associated bacteria. This study can be used as a source to assess the risk of contamination-related infection and to develop the cleaning system for the better prevention for bloodstream infections in patients with hemodialysis

    Glutamine protects small intestinal mucosa

    Get PDF
    Supportive therapy during chemotherapy has become essential, but effective preventive therapies to gastrointestinal mucosal injury are few. We investigated the efficacy of glutamine in rat anticancer drug-induced enteritis model. In this study, we used twenty male SD rats. They were divided into control, 5-fluorouracil (5-FU) (orally administered at 20mg/kg day), 5-FU+glutamine (1000 mg/kg/day) and 5-FU+glutamine+fiber and oligosaccharide (GFO[○R]) (1000 mg/kg/day) groups. All groups were sacrificed on day 6 and upper jejunums were excised. The jejunal villous height was measured in specimens. IgA level in jejunal washing solution, and serum diamine oxidase activity were also measured. The jejunal villous height was recognized as shorter in the specimen from 5-FU treated rats compared with 5-FU+glutamine treated rats (p<0.001). Serum diamine oxidase activity in 5-FU+glutamine group were significantly superior to that in 5-FU group (p=0.028). IgA level in jejunal washing solution tended to be higher in 5-FU+glutamine group than that in 5-FU group (p=0.076). On the other hand, serum diamine oxidase activity and IgA level in jejunal washing solution showed no significant difference between 5-FU+GFO and 5-FU treatment group. Our results suggest that glutamine showed protective effects on mucosal injury of small intestine in rat anticancer drug-induced enteritis model
    corecore