2 research outputs found

    Role of the Transplant Pharmacist

    Get PDF
    At the National Cerebral and Cardiovascular Center, Japan, pharmacists have been involved in drug treatment management and patient care as members of multidisciplinary heart transplant teams that include surgeons, physicians, recipient transplant coordinators, and nurses during the waiting period for heart transplantation (HTx), HTx surgery, and post-HTx. During the waiting period, pharmacists play an important role in adjusting the use of antibiotics, anticoagulants, and antiarrhythmics by patients receiving a ventricular assist device (VAD). During HTx surgery and post-HTx, pharmacists advise physicians regarding the individualized medication protocol for immunosuppression and infection prevention to be used for each patient based on the patient’s pre-HTx characteristics as well as gene polymorphisms. They thus contribute to reducing the burden on the physician through the sharing of tasks. Throughout all three phases of HTx, pharmacists repeatedly provide medication and adherence education to the patients and caregivers. It is hoped that an academic society-led training protocol as well as transplant pharmacists will be established in Japan and other developed countries, and that these specialized transplant pharmacists would then provide individualized pharmacotherapy for the use of various antibiotics, anticoagulants, and immunosuppressive agents that have a narrow range of treatment in VAD and HTx patients

    The influence of residual apixaban on bleeding complications during and after catheter ablation of atrial fibrillation

    No full text
    Background: The periprocedural protocol for atrial fibrillation (AF) ablation commonly includes anticoagulation therapy. Apixaban, a direct oral anticoagulant, is currently approved for clinical use; however, little is known about the effects of residual apixaban concentration on bleeding complications during/after AF ablation. Therefore, we measured residual apixaban concentration by using mass spectrometry and examined the anticoagulant's residual effects on bleeding complications. Methods: Fifty-eight patients (Mean age of 64.7±12.5 years; 31 males, 27 females) were enrolled and administered apixaban twice daily. We analyzed trough apixaban concentration, activated clotting time (ACT), heparin dose, and bleeding complications during/after AF ablation. Apixaban concentrations were directly measured using mass spectrometry. Results: Bleeding complications were observed in 19 patients (delayed hemostasis at the puncture site, 16; hematuria, 3; hemosputum, 1). No patient required blood transfusion. The mean trough apixaban concentration was significantly lower in patients with bleeding complications than without (152.4±73.1 vs. 206.8±98.8 ng/mL respectively, P=0.037), while the heparin dose to achieve ACT>300 s was significantly higher in patients with bleeding complications (9368.4±2929.0 vs. 7987.2±2135.2 U/body respectively, P=0.046). Interestingly, a negative correlation was found between the trough apixaban concentration and the heparin dose to achieve ACT>300 s (P=0.033, R=-0.281). Conclusions: Low residual plasma apixaban is associated with a higher incidence of bleeding complications during/after AF ablation, potentially because of a greater heparin requirement during AF ablation
    corecore