3 research outputs found

    Conservation Farming and Changing Climate: More Beneficial Than Conventional Methods for Degraded Ugandan Soils

    Get PDF
    The extent of land affected by degradation in Uganda ranges from 20% in relatively flat and vegetation-covered areas to 90% in the eastern and southwestern highlands. Land degradation has adversely affected smallholder agro-ecosystems including direct damage and loss of critical ecosystem services such as agricultural land/soil and biodiversity. This study evaluated the extent of bare grounds in Nakasongola, one of the districts in the Cattle Corridor of Uganda and the yield responses of maize (Zea mays) and common bean (Phaseolus vulgaris L.) to different tillage methods in the district. Bare ground was determined by a supervised multi-band satellite image classification using the Maximum Likelihood Classifier (MLC). Field trials on maize and bean grain yield responses to tillage practices used a randomized complete block design with three replications, evaluating conventional farmer practice (CFP); permanent planting basins (PPB); and rip lines, with or without fertilizer in maize and bean rotations. Bare ground coverage in the Nakasongola District was 187 km2 (11%) of the 1741 km2 of arable land due to extreme cases of soil compaction. All practices, whether conventional or the newly introduced conservation farming practices in combination with fertilizer increased bean and maize grain yields, albeit with minimal statistical significance in some cases. The newly introduced conservation farming tillage practices increased the bean grain yield relative to conventional practices by 41% in PPBs and 43% in rip lines. In maize, the newly introduced conservation farming tillage practices increased the grain yield by 78% on average, relative to conventional practices. Apparently, conservation farming tillage methods proved beneficial relative to conventional methods on degraded soils, with the short-term benefit of increasing land productivity leading to better harvests and food security

    Conservation Farming and Changing Climate: More Beneficial than Conventional Methods for Degraded Ugandan Soils

    Get PDF
    The extent of land affected by degradation in Uganda ranges from 20% in relatively flat and vegetation-covered areas to 90% in the eastern and southwestern highlands. Land degradation has adversely affected smallholder agro-ecosystems including direct damage and loss of critical ecosystem services such as agricultural land/soil and biodiversity. This study evaluated the extent of bare grounds in Nakasongola, one of the districts in the Cattle Corridor of Uganda and the yield responses of maize (Zea mays) and common bean (Phaseolus vulgaris L.) to different tillage methods in the district. Bare ground was determined by a supervised multi-band satellite image classification using the Maximum Likelihood Classifier (MLC). Field trials on maize and bean grain yield responses to tillage practices used a randomized complete block design with three replications, evaluating conventional farmer practice (CFP); permanent planting basins (PPB); and rip lines, with or without fertilizer in maize and bean rotations. Bare ground coverage in the Nakasongola District was 187 km2 (11%) of the 1741 km2 of arable land due to extreme cases of soil compaction. All practices, whether conventional or the newly introduced conservation farming practices in combination with fertilizer increased bean and maize grain yields, albeit with minimal statistical significance in some cases. The newly introduced conservation farming tillage practices increased the bean grain yield relative to conventional practices by 41% in PPBs and 43% in rip lines. In maize, the newly introduced conservation farming tillage practices increased the grain yield by 78% on average, relative to conventional practices. Apparently, conservation farming tillage methods proved beneficial relative to conventional methods on degraded soils, with the short-term benefit of increasing land productivity leading to better harvests and food security
    corecore