51 research outputs found

    Primary Gastrointestinal Stromal Tumor of the Liver with Cystic Changes

    Get PDF
    Gastrointestinal stromal tumors (GISTs) are known to originate specifically from the intestinal cells of Cajal located in the gastrointestinal mesenchyme. GISTs developing outside of the digestive tract have barely been reported. We encountered a first case of large primary GISTs in the liver with cystic changes. A 63-year-old man with a past history of brain infarction visited our hospital. The computed tomography (CT) revealed a 6-cm and a 10-cm mass in the right and the caudal lobe of the liver, respectively. These tumors have marginal enhancement in the arterial phase; however, they presented as hypodense in the internal tumor sites. Both liver tumors had cystic changes. Gastrointestinal examinations using endoscopy revealed no other gastrointestinal tumors, and [18F]-fluoro-2-deoxy-D-glucose positron emission tomography/CT revealed multiple bone metastases in addition to the liver tumors. The liver tumor specimens were composed of spindle cells, and the immunohistochemical staining for c-Kit and for DOG1, as discovered on GIST, was positive. The patient was diagnosed with primary hepatic GIST with cystic changes

    Effect of Central Corticotropin-Releasing Factor on Hepatic Lipid Metabolism and Inflammation-Related Gene Expression in Rats

    No full text
    Corticotropin-releasing factor (CRF) in the brain acts on physiological and pathophysiological modulation of the hepatobiliary system. Central CRF administration aggravates experimental acute liver injury by decreasing hepatic blood flow. Conversely, minimal evidence is available regarding the effect of centrally acting CRF on hepatic lipid metabolism and inflammation. We examined whether central CRF affects hepatic lipid metabolism and inflammation-related gene expression in rats. Male Long Evans rats were intracisternally injected with CRF (10 μg) or saline. Rats were sacrificed 2 h, 6 h, and 24 h after the CRF injection, the liver was isolated, and mRNA was extracted. Next, hepatic lipid metabolism and inflammation-related gene expression were examined. Hepatic SREBF1 (sterol regulatory element-binding transcription factor 1) mRNA levels were significantly increased 6 h and 24 h after intracisternal CRF administration when compared with those in the control group. Hepatic TNFα and IL1β mRNA levels increased significantly 6 h after intracisternal CRF administration. Hepatic sympathectomy or guanethidine treatment, not hepatic branch vagotomy or atropine treatment, inhibited central CRF-induced increase in hepatic SREBF1, TNFα and IL1β mRNA levels. These results indicated that central CRF affects hepatic de novo lipogenesis and inflammation-related gene expression through the sympathetic-noradrenergic nervous system in rats

    Effect of Adrenergic Agonists on High-Fat Diet-Induced Hepatic Steatosis in Mice

    No full text
    The autonomic nervous system, consisting of sympathetic and parasympathetic branches, plays an important role in regulating metabolic homeostasis. The sympathetic nervous system (SNS) regulates hepatic lipid metabolism by regulating adrenergic receptor activation, resulting in the stimulation of hepatic very-low-density lipoprotein-triglyceride (TG) production in vivo. However, only a few studies on the relationship between SNS and hepatic steatosis have been reported. Here, we investigate the effect of adrenergic receptor agonists on hepatic steatosis in mice fed a high-fat diet (HFD). The α-adrenergic receptor agonist phenylephrine (10 mg/kg/d) or the β-adrenergic receptor agonist isoproterenol (30 mg/kg/d) was coadministered with HFD to male mice. After five weeks, hepatic steatosis, TG levels, and hepatic fat metabolism-related biomarkers were examined. HFD treatment induced hepatic steatosis, and cotreatment with phenylephrine, but not isoproterenol, attenuated this effect. Phenylephrine administration upregulated the mRNA levels of hepatic peroxisome proliferator-activated receptor alpha and its target genes (such as carnitine palmitoyltransferase 1) and increased hepatic β-hydroxybutyrate levels. Additionally, phenylephrine treatment increased the expression of the autophagosomal marker LC3-II but decreased that of p62, which is selectively degraded during autophagy. These results indicate that phenylephrine inhibits hepatic steatosis through stimulation of β-oxidation and autophagy in the liver

    Relationship between Non-alcoholic Fatty Liver Disease and Thyroid Dysfunction

    No full text

    Investigation and prediction of enteral nutrition problems after percutaneous endoscopic gastrostomy

    No full text
    AIM: To investigate and predict enteral nutrition problems after percutaneous endoscopic gastrostomy (PEG)
    corecore