3 research outputs found

    A Router for Symmetrical FPGAs based on Exact Routing Density Evaluation

    Get PDF
    Abstract This paper presents a new performance and routability driven routing algorithm for symmetrical array based field-programmable gate arrays (FPGAs). A key contribution of our work is to overcome one essential limitation of the previous routing algorithms: inaccurate estimations of routing density which were too general for symmetrical FPGAs. To this end, we derive an exact routing density calculation that is based on a precise analysis of the structure (switch block) of symmetrical FPGAs, and utilize it consistently in global and detailed routings. With an introduction of the proposed accurate routing metrics, we design a new routing algorithm called a cost-effective net-decomposition based routing which is fast, and yet produces remarkable routing results in terms of both routability and path/net delays. We performed an extensive experiment to show the effectiveness of our algorithm based on the proposed cost metrics
    corecore