2 research outputs found

    A Novel Gammapartitivirus That Causes Changes in Fungal Development and Multi-Stress Tolerance to Important Medicinal Fungus Cordyceps chanhua

    No full text
    Cicada flower, scientifically named Cordyceps chanhua, is an important and well-known Chinese cordycipitoid medicinal mushroom. Although most mycoviruses seem to induce latent infections, some mycoviruses cause host effects. However, the effects of mycovirus on the fungal development and stress tolerance of C. chanhua remain unknown. In this study, we report a novel mycovirus designated Cordyceps chanhua partitivirus 1 (CchPV1) from C. chanhua isolate RCEF5997. The CchPV1 genome comprises dsRNA 1 and dsRNA 2, 1784 and 1563 bp in length, respectively. Phylogenetic analysis using the aa sequences of RdRp revealed that CchPV1 grouped with members of the genus Gammapartitivirus in the family Partitiviridae. We further co-cultivated on PDA donor strain RCEF5997 and recipient C. chanhua strain RCEF5833 (Vf) for 7 days, and we successfully obtained an isogenic line of strain RCEF5833 with CchPV1 (Vi) through single-spore isolation, along with ISSR marker and dsRNA extraction. The biological comparison revealed that CchPV1 infection slows the growth rate of the host, but increases the conidiation and formation of fruiting bodies of the host. Furthermore, the assessment of fungal tolerance demonstrated that CchPV1 weakens the multi-stress tolerance of the host. Thus, CchPV1 infection cause changes in fungal development and multi-stress tolerance of the host C. chanhua. The findings of this study elucidate the effects of gammapartitivirus on host entomogenous fungi and provide a novel strategy for producing high-quality fruiting bodies of C. chanhua

    A novel partitivirus orchestrates conidiation, stress response, pathogenicity, and secondary metabolism of the entomopathogenic fungus Metarhizium majus.

    Get PDF
    Mycoviruses are widely present in all major groups of fungi but those in entomopathogenic Metarhizium spp. remain understudied. In this investigation, a novel double-stranded (ds) RNA virus is isolated from Metarhizium majus and named Metarhizium majus partitivirus 1 (MmPV1). The complete genome sequence of MmPV1 comprises two monocistronic dsRNA segments (dsRNA 1 and dsRNA 2), which encode an RNA-dependent RNA polymerase (RdRp) and a capsid protein (CP), respectively. MmPV1 is classified as a new member of the genus Gammapartitivirus in the family Partitiviridae based on phylogenetic analysis. As compared to an MmPV1-free strain, two isogenic MmPV1-infected single-spore isolates were compromised in terms of conidiation, and tolerance to heat shock and UV-B irradiation, while these phenotypes were accompanied by transcriptional suppression of multiple genes involved in conidiation, heat shock response and DNA damage repair. MmPV1 attenuated fungal virulence since infection resulted in reduced conidiation, hydrophobicity, adhesion, and cuticular penetration. Additionally, secondary metabolites were significantly altered by MmPV1 infection, including reduced production of triterpenoids, and metarhizins A and B, and increased production of nitrogen and phosphorus compounds. However, expression of individual MmPV1 proteins in M. majus had no impact on the host phenotype, suggesting insubstantive links between defective phenotypes and a single viral protein. These findings indicate that MmPV1 infection decreases M. majus fitness to its environment and its insect-pathogenic lifestyle and environment through the orchestration of the host conidiation, stress tolerance, pathogenicity, and secondary metabolism
    corecore