2 research outputs found
Selection of Solidification Pathway in Rapid Solidification Processes
Rapid Solidification Processing of Alloys Enables the Formation of Exotic Nonequilibrium Microstructures. However, the Interrelationship between the Processing Parameters and the Resulting Microstructure is Yet to Be Fully Understood. in Melt Spinning (MS) and Additive Manufacturing (AM) of Rapidly Solidified Alloys, Opposite Microstructure Development Sequences Were Observed. a Fine-To-Coarse Microstructural Transition is Typically Observed in Melt-Spun Ribbons, Whereas Melt Pools in AM Exhibit a Coarse-To-Fine Transition. in This Paper, the Microstructural Evolutions during These Two Processes Are Investigated using Phase-Field Modeling. the Variation of All Key Variables of the Solid-Liquid Interface (Temperature, Composition, and Velocity) throughout the Entire Rapid Solidification of AM and MS Processes Was Acquired with High Accuracy. It is Found that the Onset of Nucleation Determines the Selection of the Solidification Pathway And, Consequently, the Evolution of Temperature and Velocity of the Interface during the Rapid Solidification. the Switching of Control Mechanisms of the Solid-Liquid Interface, Which Happens in Both Processes But in Opposite Directions, is Found to Cause the Velocity Jump and Disrupt the Microstructure Development
Improved microstructure and mechanical properties of sheet metals in ultrasonic vibration enhanced biaxial stretch forming
Ultrasonic energy is used for applying severe plastic deformation on metal surfaces. In the present work, the effect of ultrasonic vibration on the formability, microhardness and microstructural properties of St14 steel sheet has been investigated. To be precise, a semi-hemispherical-head forming tool had shaped the specimens until the necking started to happen. Conventional as well as the ultrasonic-assisted biaxial stretch forming test has been performed on St14 steel sheets and obtained data has been used to compare the hardness and microstructure of the specimen with and without superimposing the ultrasonic vibration. It was observed that the hardness of the samples which have been shaped by applying ultrasonic vibrations to the tool with an amplitude of 15µm at 20.5 kHz increased significantly in compared with the samples which have been shaped without using ultrasonic vibration, revealing the efficiency of the ultrasonic operation in increasing the hardness.</span