2 research outputs found

    Effects of Dietary Supplementation with Glutamine on the Immunity and Intestinal Barrier Gene Expression in Broiler Chickens Infected with Salmonella Enteritidis

    No full text
    The effects of glutamine (Gln) on immunity and intestinal barrier gene expression levels in broilers challenged with Salmonella Enteritidis were evaluated. A total of 400 1-day-old broilers were randomly assigned to four groups, 10 repetition treatments per group with 10 broiler chickens for a 21-day feeding trial. The groups were the normal control group (CON, no infected group, fed with a basal diet); the S. Enteritidis-infected control group (SCC, infected with 2.0 × 104 CFU/mL of S. Enteritidis, fed a basal diet); and the Gln 1 and 2 groups, who were challenged with S. Enteritidis and fed a basal diet plus Gln at 0.5% and 1.0%, respectively. The results show that S. Enteritidis had adverse effects on the average daily feed intake, average daily gain, and the feed conversion ratio of infected broilers compared with those of CON broilers on d 7 (p < 0.05); decreased serum immunoglobulin A (IgA), immunoglobulin M (IgM), and immunoglobulin G (IgG) concentrations, and intestinal mucosa Bcl-2 mRNA expression levels (p < 0.05); increased the Lysozyme (LZM, only serum), NO, inducible NO synthase (iNOS) (except at 4 d), and total nitric oxide synthase (TNOS) (except at 4 d) activities in serum and the intestinal mucosa; and increased intestinal mucosa polymeric immunoglobulin receptor (pIgR) (except at 21 d), Avian beta-defensin 5 (AvBD5), AvBD14, Bax, and Bak mRNA expression levels during the experimental period (p < 0.05). Supplementation with Gln improved growth performance; increased serum IgA, IgG, and IgM concentrations and intestinal mucosa Bcl-2 mRNA expression levels (p < 0.05); decreased the LZM (only serum), NO, iNOS (except at 4 d), and TNOS (except at 4 d) activities in serum and the intestinal mucosa; and decreased intestinal mucosa pIgR (except at 21 d), AvBD5, AvBD14, Bax, and Bak mRNA expression levels during the experimental period (p < 0.05). These results suggest that Gln might lessen the inflammatory reaction of the small intestine and enlarge the small bowel mucosa immune and barrier function in broiler chickens challenged with S. Enteritidis

    A Chromosome-Scale Genome Assembly of Paper Mulberry (Broussonetia papyrifera) Provides New Insights into Its Forage and Papermaking Usage

    No full text
    Paper mulberry (Broussonetia papyrifera) is a well-known woody tree historically used for Cai Lun papermaking, one of the four great inventions of ancient China. More recently, Paper mulberry has also been used as forage to address the shortage of feedstuff because of its digestible crude fiber and high protein contents. In this study, we obtained a chromosome-scale genome assembly for Paper mulberry using integrated approaches, including Illumine and PacBio sequencing platform as well as Hi-C, optical, and genetic maps. The assembled Paper mulberry genome consists of 386.83 Mb, which is close to the estimated size, and 99.25% (383.93 Mb) of the assembly was assigned to 13 pseudochromosomes. Comparative genomic analysis revealed the expansion and contraction in the flavonoid and lignin biosynthetic gene families, respectively, accounting for the enhanced flavonoid and decreased lignin biosynthesis in Paper mulberry. Moreover, the increased ratio of syringyl-lignin to guaiacyl-lignin in Paper mulberry underscores its suitability for use in medicine, forage, papermaking, and barkcloth making. We also identified the root-associated microbiota of Paper mulberry and found that Pseudomonas and Rhizobia were enriched in its roots and may provide the source of nitrogen for its stems and leaves via symbiotic nitrogen fixation. Collectively, these results suggest that Paper mulberry might have undergone adaptive evolution and recruited nitrogen-fixing microbes to promote growth by enhancing flavonoid production and altering lignin monomer composition. Our study provides significant insights into genetic basis of the usefulness of Paper mulberry in papermaking and barkcloth making, and as forage. These insights will facilitate further domestication and selection as well as industrial utilization of Paper mulberry worldwide
    corecore