23 research outputs found

    Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status

    Get PDF
    SummaryRegulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS) in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3) was upregulated in a large subset of benign prostatic hyperplasia (BPH) tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH

    Grid-Connected Microbial Fuel Cell Modeling and Control in Distributed Generation

    No full text
    Water shortages and water pollution have seriously threatened the sustainable development of the community. The grid-connected microbial fuel cell is an effective way to control the cost of wastewater treatment plants. Moreover, it solves the problem of low efficiency and high energy consumption. In view of the characteristics of strong coupling, non-linearity, and internal load in the process of microbial fuel cell grid connection, it is necessary to design the grid-connected unit of power electronic device. Based on the establishment of the microbial fuel cell stack model, the stability control and the constant power control scheme were designed for the chopper and inverter, respectively. The simulation results showed that the control strategy with the combination of voltage stabilizer and constant power can make a grid-connected system of all phase voltage and frequency output. The three-phase voltage Uabc was steady at 7 h and the voltage amplitude was controlled at roughly 380 V, according to the output voltage waveform. The value was 50 Hz, which satisfies the criteria for grid connection

    Grid−Connected Microbial Fuel Cell Modeling and Control in Distributed Generation

    No full text
    Water shortages and water pollution have seriously threatened the sustainable development of the community. The grid−connected microbial fuel cell is an effective way to control the cost of wastewater treatment plants. Moreover, it solves the problem of low efficiency and high energy consumption. In view of the characteristics of strong coupling, non−linearity, and internal load in the process of microbial fuel cell grid connection, it is necessary to design the grid−connected unit of power electronic device. Based on the establishment of the microbial fuel cell stack model, the stability control and the constant power control scheme were designed for the chopper and inverter, respectively. The simulation results showed that the control strategy with the combination of voltage stabilizer and constant power can make a grid−connected system of all phase voltage and frequency output. The three−phase voltage Uabc was steady at 7 h and the voltage amplitude was controlled at roughly 380 V, according to the output voltage waveform. The value was 50 Hz, which satisfies the criteria for grid connection

    Enhancing oxygen permeation via the incorporation of silver inside perovskite oxide membranes

    No full text
    As a possible novel cost-effective method for oxygen production from air separation, ion-conducting ceramic membranes are becoming a hot research topic due to their potentials in clean energy and environmental processes. Oxygen separation via these ion-conducting membranes is completed via the bulk diffusion and surface reactions with a typical example of perovskite oxide membranes. To improve the membrane performance, silver (Ag) deposition on the membrane surface as the catalyst is a good strategy. However, the conventional silver coating method has the problem of particle aggregation, which severely lowers the catalytic efficiency. In this work, the perovskite oxide La0.8Ca0.2Fe0.94O3-a (LCF) and silver (5% by mole) composite (LCFA) as the membrane starting material was synthesized using one-pot method via the wet complexation where the metal and silver elements were sourced from their respective nitrate salts. LCFA hollow fiber membrane was prepared and comparatively investigated for air separation together with pure LCF hollow fiber membrane. Operated from 800 to 950 degrees C under sweep gas mode, the pure LCF membrane displayed the fluxes from 0.04 to 0.54 mL min(-1) cm(-2). Compared to pure LCF, under similar operating conditions, the flux of LCFA membrane was improved by 160%

    Simulation-guided design of a finger-like nickel-based anode for enhanced performance of direct carbon solid oxide fuel cells

    No full text
    Funding Information: The authors would like to thank the National Natural Science Foundation of China ( 21908133 and 21978157 ), SDUT & Zhangdian District Integration Development Project ( 2022JS004 ), Major Basic Research Project of Natural Science Foundation in Shandong Province ( ZR2020ZD10 ), Natural Science Foundation of Shandong Province ( ZR2022ME016 ), Shandong Postdoctoral Innovation Project ( SDCX-ZG-202201014 ), and SDUT & Zibo City Integration Development Project ( 2021SNPT0015 ). Publisher Copyright: © 2023 The AuthorsDirect carbon solid oxide fuel cells (DC-SOFCs) can convert solid carbon directly to electricity via electrochemical oxidation and require less investment compared to other liquid or gas-fed fuel cells. Anode characteristic is one of the important factors in achieving efficient and stable operation of DC-SOFCs. In this work, we have successfully designed and developed 2D multi-physics field models for DC-SOFCs with finger-like nickel-based anode (Cell-A) and traditional nickel-based anode (Cell-B), respectively. Simulation results revealed that the cell performance was significantly enhanced with increases in the anode porosity and decreases in the distance of carbon fuel to porous anode. More importantly, the anode featuring a finger-like pore structure assumed a pivotal role in cell performance. Specifically, Cell-A exhibited higher electrochemical performance compared to Cell-B due to the lower resistance for gas transport and more abundant amount of three-phase boundaries for electrochemical reactions. Experimental results verified the simulation findings by making and operating these two DC-SOFCs. The fabricated Cell-A with finger-like anode delivered higher power output of 858 and 371 mW cm−2 at 850 °C when fueled with hydrogen and activated carbon, respectively, relative to Cell-B with traditional anode. The beneficial characteristic of finger-like anode was further demonstrated by the ability of Cell-A to retain stable operation for 14.1 h at 100 mA with the fuel utilization of 15.8% at 850 °C. This study provides important guidance for the design and improvement of DC-SOFCs, and promotes the sustainable utilization of carbon resources.Peer reviewe

    Platinum supported on multifunctional titanium cobalt oxide nanosheets assembles for efficient oxygen reduction reaction

    No full text
    To move towards the successful commercialization of fuel cells, emphasizing solely on the catalytic activity is not sufficient, and requirements on performance stability are also urgently to be solved. In this work, we describe a facile and robust strategy to the development of a novel Pt based catalyst with binary titanium cobalt oxide as the support. The binary titanium cobalt oxide nanotubes are characterized with hierarchical tubular porous and hollow structures that constructed by ultrathin interconnected nanosheets assembles (labeled as Ti0.8Co0.2O2 NTAs). The resultant catalyst (Pt/Ti0.8Co0.2O2 NTAs) exhibited much higher mass activity for oxygen reduction reaction (ORR) compared with the commercial Pt/C catalyst, and it also possesses excellent structure stability. The experimental data demonstrates that the novel support plays a significant role in the enhanced ORR activity, which not only acts as a robust and desirable support to afford a high dispersion for Pt nanoparticles, but also as a co-catalyst to boost the activity of the resultant catalyst via the modulation of the electronic structures of the supported Pt atoms. This work opens a new path for maximizing the ORR activity and durability by introducing porous binary titanium based oxides as the Pt support, which combines the merits of high stability, co-catalysis and doping effects. (c) 2018 Elsevier Ltd. All rights reserved

    Platinum decorated hierarchical porous structures composed of ultrathin titanium nitride nanoflakes for efficient methanol oxidation reaction

    No full text
    Alloying Pt electrocatalysts with the second transition metal (e. g., Fe, Co, Ni and Cu) is an effective strategy to boost the methanol oxidation reaction (MOR) and simultaneously reduce the catalyst cost for the direct methanol fuel cells. However, the durability issues caused by the leaching of the transition metals for prolonged time and carbon corrosion hinder the practical applications of the Pt alloys. Herein, for the first time, a facile and robust strategy is developed to synthesize titanium nitride and copper doped titanium nitride with porous and hierarchical tubular structures (labeled as TiN NFs and Ti0.9Cu0.1N NFs, respectively). When used as the Pt support, both of Pt/TiN NFs and Pt/Ti0.9Cu0.1N NFs exhibit much enhanced activity and durability compared with the commercial Pt/C catalyst. The experimental data confirms that the leaching of the transition metal can be significantly impeded by this strategy while their advantageous properties that favors MOR activity for the Pt based catalysts are maintained. This work opens a new path for maximizing the MOR activity and stability by introducing porous binary transition metal nitride as the Pt support, which integrates the advantages of high stability, co-catalysis and doping effects. (c) 2018 Elsevier Ltd. All rights reserved

    Dehydrogenation Coupling of Methane Using Catalyst-Loaded Proton-Conducting Perovskite Hollow Fiber Membranes

    No full text
    Catalytic dehydrogenation coupling of methane (DCM) represents an effective way to convert natural gas to more useful C2 products (C2H6, C2H4). In this work, BaCe0.85Tb0.05Co0.1O3-δ (BCTCo) perovskite hollow fiber membranes were fabricated by the combined phase inversion and sintering method. SrCe0.95Yb0.05O3-δ (SCYb) perovskite oxide was loaded as a catalyst onto the inner hollow fiber membrane surface, which promoted the CH4 conversion and the C2 hydrocarbon selectivity during the DCM reaction. The introduction of steam into the methane feed gas mixture elevated the C2 selectivity and yield due to the alleviation of coke deposition. Switching N2 to air as the sweep gas further increased the C2 selectivity and yield. However, the conversion of methane was limited by both the low permeability of the membrane and the insufficient catalytic activity of the catalyst, leading to low C2 yield

    Broadband Achromatic Metasurfaces for Longwave Infrared Applications

    No full text
    Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conventional metasurfaces are highly chromatic, which adversely affects their performance in broadband applications. In this work, the chromatic dispersion properties of metasurfaces are analyzed via ray tracing, and a general method for correcting chromatic aberrations of metasurfaces is presented. By combining the dynamic and geometric phases, the desired group delay and phase profiles are imparted to the metasurfaces simultaneously, resulting in good achromatic performance. Two broadband achromatic metasurfaces based on all-germanium platforms are demonstrated in the LWIR: a broadband achromatic metalens with a numerical aperture of 0.32, an average intensity efficiency of 31%, and a Strehl ratio above 0.8 from 9.6 μm to 11.6 μm, and a broadband achromatic metasurface grating with a constant deflection angle of 30° from 9.6 μm to 11.6 μm. Compared with state-of-the-art chromatic-aberration-restricted LWIR metasurfaces, this work represents a substantial advance and brings the field a step closer to practical applications
    corecore