3,105 research outputs found

    Development and Commissioning of the HARDROC based Readout for the INO-ICAL Experiment

    Full text link
    Glass based Resistive Plate Chambers (RPCs) are going to be used as an active element in the Iron Calorimeter (ICAL) experiment at the India based Neutrino Observatory (INO), which is being constructed to study atmospheric neutrinos. Though the RPC detector operational parameters are more or less finalized, the readout electronics is being developed using various technologies. The ICAL experiment will consist of about 29,000 RPC detectors of 2 m ×\times 2 m in size with each detector having 64 readout channels both in the X and Y directions. The present study focusses on multi-channel electronics based on SiGe 350 nm technology as an option for the INO-ICAL RPC detectors. The study includes commissioning and usage of frontend application specific integrated circuit (ASIC) HARDROC chip in which 64 channels are handled independently to perform zero suppression. We present first testbench results using the HARDROC chip with the aim to use it finally in the ICAL experiment.Comment: 7 Pages, 7 Figures, The XIII workshop on Resistive Plate Chambers and related detectors (RPC2016) - Ghent (Belgium

    Search for the differences in Atmospheric Neutrinos and Antineutrinos oscillation parameters at the INO-ICAL Experiment

    Full text link
    In this paper, we present a study to measure the differences between the atmospheric neutrino and anti-neutrino oscillations in the Iron-Calorimeter detector at the India-based Neutrino Observatory experiment. Charged Current νμ\nu_{\mu} and νμ\overline{\nu}_{\mu} interactions with the detector under the influence of earth matter effect have been simulated for ten years of exposure. The observed νμ\nu_{\mu} and νμ\overline{\nu}_{\mu} events spectrum are separately binned into direction and energy bins, and a χ2\chi^{2} is minimised with respect to each bin to extract the oscillation parameters for νμ\nu_{\mu} and νμ\overline{\nu}_{\mu} separately. We then present the ICAL sensitivity to confirm a non-zero value of the difference in atmospheric mass squared of neutrino and anti-neutrino i.e. Δm322Δm232|\Delta m^{2}_{32}|-|\Delta\overline{m^{2}}_{32}|

    Study of RPC bakelite electrodes and detector performance for INO-ICAL

    Full text link
    The Resistive Plate Chambers (RPCs) are going to be used as the active detectors in the India-based Neutrino Observatory (INO)-Iron Calorimeter (ICAL) experiment for the detection and study of atmospheric neutrinos. In this paper, an extensive study of structural and electrical properties for different kind of bakelite RPC electrodes is presented. RPCs fabricated from these electrodes are tested for their detector efficiency and noise rate. The study concludes with the variation of efficiency, leakage current and counting rate over the period of operation with different gas compositions and operational conditions like temperature and relative humidity.Comment: 8 pages, 8 Figures, matches version to appear in JINS

    Hadron energy response of the Iron Calorimeter detector at the India-based Neutrino Observatory

    Full text link
    The results of a Monte Carlo simulation study of the hadron energy response for the magnetized Iron CALorimeter detector, ICAL, proposed to be located at the India-based Neutrino Observatory (INO) is presented. Using a GEANT4 modeling of the detector ICAL, interactions of atmospheric neutrinos with target nuclei are simulated. The detector response to hadrons propagating through it is investigated using the hadron hit multiplicity in the active detector elements. The detector response to charged pions of fixed energy is studied first, followed by the average response to the hadrons produced in atmospheric neutrino interactions using events simulated with the NUANCE event generator. The shape of the hit distribution is observed to fit the Vavilov distribution, which reduces to a Gaussian at high energies. In terms of the parameters of this distribution, we present the hadron energy resolution as a function of hadron energy, and the calibration of hadron energy as a function of the hit multiplicity. The energy resolution for hadrons is found to be in the range 85% (for 1GeV) -- 36% (for 15 GeV).Comment: 14 pages, 10 figures (24 eps files

    Model Unspecific Search in CMS

    Full text link
    We present the results of a model independent analysis, which systematically scans the data taken by CMS for deviations from the Standard Model predictions. Due to the minimal theoretical bias this approach is sensitive to a variety of models for new physics. Events with at least one electron or muon are classified according to their content of reconstructed objects (muons, electrons, photons, jets and missing transverse energy). A broad scan of three kinematic distributions in those classes is performed by identifying deviations from Standard Model expectations, accounting for systematic uncertainties.Comment: Presented at the 2011 Hadron Collider Physics symposium (HCP-2011), Paris, France, November 14-18 2011, 2 pages, 3 figur
    corecore