15 research outputs found

    Investigating the effect of DG infeed on the effective cover of distance protection scheme in mixed-MV distribution network

    Get PDF
    The environmental and economic features of renewable energy sources have made it possible to be integrated as Distributed Generation (DG) units in distribution networks and to be widely utilized in modern distribution systems. The intermittent nature of renewable energy sources, altering operational conditions, and the complex topology of active distribution networks makes the level of fault currents significantly variable. Thus, the use of distance protection scheme instead of conventional overcurrent schemes offers an appropriate alternative for protection of modern distribution networks. In this study, the effect of integrating multiple DG units on the effective cover of distance protection schemes and the coordination between various relays in the network was studied and investigated in radiology and meshed operational topologies. Also, in cases of islanded and grid-connected modes. An adaptive distance scheme has been proposed for adequate planning of protection schemes to protect complex networks with multiple distribution sources. The simplified simulated network implemented in NEPLAN represents a benchmark IEC microgrid. The comprehensive results show an effective protection measure for secured microgrid operation. Article History: Received October 18th 2017; Received in revised form May 17th 2018; Accepted July 8th 2018; Available online How to Cite This Article: Saad, S.M., Naily, N.E. and Mohamed, F.A. (2018). Investigating the Effect of DG Infeed on the Effective Cover of Distance Protection Scheme in Mixed-MV Distribution Network. International Journal of Renewable Energy Development, 7(3), 223-231. https://doi.org/10.14710/ijred.7.3.223-23

    Power Quality and System Stability Impact of Large-Scale Distributed Generation on the Distribution Network: Case Study of 60 MW Derna Wind Farm

    Get PDF
    Wind energy (WE) has become one of the most promising and developed forms of renewable energy source due to its efficiency and the availability of different capacities according to the loading requirements. The integration of wind turbines in the Libyan network has become an indispensable choice due to Libya’s distinguished location and for the Libyan National Initiative. Despite the numerous benefits of WE, the penetration of WE sources in the distribution network has some negative impacts related to the quality and reliability of the electric power supplied to the network. Owing to, the intermittent nature of these sources and electronic circuits needed to regulate the extracted power to comply with the grid requirements. In this chapter, implementation of the eastern Libyan network in NEPLAN and MATLAB/SIMULINK packages are carried out to investigate and analyze the significance of wind farm penetration in the medium voltage level of Libyan Distribution Network. A 60 MVA wind farm system has been connected to the Libyan distribution network according to the Libyan National Initiative. Different penetration scenarios are simulated to testify the technical aspects of integrating WE on the distribution level

    Highly sensitive multifunction protection coordination scheme for improved reliability of power systems with distributed generation (PVs)

    Get PDF
    The high penetration of distribution generators (DGs), such as photovoltaic (PV), has made optimal overcurrent coordination a major concern for power protection. In the literature, the conventional single or multi‐objective function (OF) for phase overcurrent relays (OCRs) scheme faces challenges in terms of stability, sensitivity, and selectivity to handle the integration of DGs and ground fault scenarios. In this work, a new optimal OCR coordination scheme has been developed as a multifunction scheme for phase and ground events using standard and non‐standard tripping characteristics. This research introduces and validates a coordinated optimum strategy based on two new optimization approaches, the Tug of War Optimization algorithm (TWO) and the Charged System Search algorithm (CSS), to mitigate the effects of DGs on fault currents and locations across the power network. Industrial software is used to create a case study of a CIGRE power network equipped with two 10 MW PV systems, and the results of the proposed new optimum coordination scheme are compared to traditional schemes. The findings show that the proposed multifunction OCR scheme is able to reduce the tripping time of OCRs over different fault and grid operation scenarios and increase the sensitivity of the relays in islanding operation mode

    Enhancing resilience of advanced power protection systems in smart grids against cyber–physical threats

    Get PDF
    Recently, smart grids introduce significant challenges to power system protection due to the high integration with distributed energy resources (DERs) and communication systems. To effectively manage the impact of DERs on power networks, researchers are actively formulating adaptive protection strategies, requiring robust communication schemes. However, concerns remain over the occurrence of communication connection failures and the potential risks presented by cyber‐attacks. This work addresses these challenges by investigating the impact of cyber‐attacks on different adaptive overcurrent relays (OCRs) approaches. Here, modern adaptive OCR coordination approaches using different group settings has integrated in evaluating high voltage/medium/low voltage (HV/MV/LV) network model with real network parameters at the MV/LV level. Additionally, a voltage‐based relay is developed and employed to enhance protection system performance under various cyber threats, aiming to reduce tripping time and to minimize energy that is not supplied. The results show that voltage‐based scheme outperform the traditional adaptive OCRs in terms of response time and mis coordination events under cyber‐attacks. In the proposed MV/LV real network scenario characterized by an 89% availability of a 4 MW photovoltaic system, even a brief interruption caused by cyber‐attacks can result in significant cost consequences

    The recent development of protection coordination schemes based on inverse of AC microgrid: A review

    Get PDF
    Integration of distributed generation systems and diversity of microgrid operations led to a change in the structure of the power system. Due to this conversion, new challenges have arisen when employing traditional overcurrent protection schemes. As a consequence, non‐classical protection schemes have attracted significant attention in the last few years. Engineers and scholars have proposed different non‐standard methods to increase the power protection system and ensure the highly selectivity performance. Although the non‐standard characteristics and their requirements, in general, have been outlined and analyzed in the available literature, protection coordination based on voltage current–time inverse, as a branch of non‐standard optimization methods, has not yet been thoroughly discussed, compared, or debated in detail. To close this gap, this review introduces a broad overview of recent research and developments of the voltage current–time inverse based protection coordination. Focuses on assessing the potential advantages and disadvantages of related studies and provide a classification and analysis of these studies. The future trends and some recommendations have been included in this review for improving fault detection sensitivity and coordination reliability

    Innovative Optimal Nonstandard Tripping Protection Scheme for Radial and Meshed Microgrid Systems

    No full text
    The coordination of optimal overcurrent relays (OCRs) for modern power networks is nowadays one of the critical concerns due to the increase in the use of renewable energy sources. Modern grids connected to inverter-based distributed generations (IDGs) and synchronous distributed generations (SDGs) have a direct impact on fault currents and locations and then on the protection system. In this paper, a new optimal OCR coordination scheme has been developed based on the nonstandard time–current characteristics (NSTCC) approach. The proposed scheme can effectively minimize the impact of distributed generations (DGs) on OCR coordination by using two optimization techniques: genetic algorithm (GA) and hybrid gravitational search algorithm–sequential quadratic programming (GSA–SQP) algorithm. In addition, the proposed optimal OCR coordination scheme has successfully employed a new constraint reduction method for eliminating the considerable number of constraints in the coordination and tripping time formula by using only one variable dynamic coefficient. The proposed protection scheme has been applied in IEEE 9-bus and IEC MG systems as benchmark radial networks as well as IEEE 30-bus systems as meshed structures. The results of the proposed optimal OCR coordination scheme have been compared to standard and nonstandard characteristics reported in the literature. The results showed a significant improvement in terms of the protection system sensitivity and reliability by minimizing the operating time (OT) of OCRs and demonstrating the effectiveness of the proposed method throughout minimum and maximum fault modes

    Highly sensitive multifunction protection coordination scheme for improved reliability of power systems with distributed generation (PVs)

    No full text
    Abstract The high penetration of distribution generators (DGs), such as photovoltaic (PV), has made optimal overcurrent coordination a major concern for power protection. In the literature, the conventional single or multi‐objective function (OF) for phase overcurrent relays (OCRs) scheme faces challenges in terms of stability, sensitivity, and selectivity to handle the integration of DGs and ground fault scenarios. In this work, a new optimal OCR coordination scheme has been developed as a multifunction scheme for phase and ground events using standard and non‐standard tripping characteristics. This research introduces and validates a coordinated optimum strategy based on two new optimization approaches, the Tug of War Optimization algorithm (TWO) and the Charged System Search algorithm (CSS), to mitigate the effects of DGs on fault currents and locations across the power network. Industrial software is used to create a case study of a CIGRE power network equipped with two 10 MW PV systems, and the results of the proposed new optimum coordination scheme are compared to traditional schemes. The findings show that the proposed multifunction OCR scheme is able to reduce the tripping time of OCRs over different fault and grid operation scenarios and increase the sensitivity of the relays in islanding operation mode

    Smart Grid Resilience for Grid-Connected PV and Protection Systems under Cyber Threats

    No full text
    In recent years, the integration of Distributed Energy Resources (DERs) and communication networks has presented significant challenges to power system control and protection, primarily as a result of the emergence of smart grids and cyber threats. As the use of grid-connected solar Photovoltaic (PV) systems continues to increase with the use of intelligent PV inverters, the susceptibility of these systems to cyber attacks and their potential impact on grid stability emerges as a critical concern based on the inverter control models. This study explores the cyber-threat consequences of selectively targeting the components of PV systems, with a special focus on the inverter and Overcurrent Protection Relay (OCR). This research also evaluates the interconnectedness between these two components under different cyber-attack scenarios. A three-phase radial Electromagnetic Transients Program (EMTP) is employed for grid modeling and transient analysis under different cyber attacks. The findings of our analysis highlight the complex relationship between vulnerabilities in inverters and relays, emphasizing the consequential consequences of affecting one of the components on the other. In addition, this work aims to evaluate the impact of cyber attacks on the overall performance and stability of grid-connected PV systems. For example, in the attack on the PV inverters, the OCR failed to identify and eliminate the fault during a pulse signal attack with a short duration of 0.1 s. This resulted in considerable harmonic distortion and substantial power losses as a result of the protection system’s failure to recognize and respond to the irregular attack signal. Our study provides significant contributions to the understanding of cybersecurity in grid-connected solar PV systems. It highlights the importance of implementing improved protective measures and resilience techniques in response to the changing energy environment towards smart grids
    corecore