8,727 research outputs found

    Azimuthal correlations of D-mesons in pp+pp and pp+Pb collisions at LHC energies

    Full text link
    We study the correlations of D mesons produced in pp+pp and pp+Pb collisions. These are found to be sensitive to the effects of the cold nuclear medium and the transverse momentum (pTp_T) regions we are looking into. In order to put this on a quantitative footing, as a first step we analyse the azimuthal correlations of D meson-charged hadron(Dh), and then predict the same for D meson -anti D meson (DDD\overline{D}) pairs in pp+pp and pp+Pb collisions with strong coupling at leading order O\cal{O}(αs2\alpha_{s}^{2}) and next to leading order O\cal{O}(αs3\alpha_{s}^{3}) which includes space-time evolution (in both systems), as well cold nuclear matter effects (in pp+Pb). This also sets the stage and baseline for the identification and study of medium modification of azimuthal correlations in relativistic collision of heavy nuclei at the Large Hadron Collider.Comment: 12 pages, 4 figure

    X-ray properties of the microquasar GRS 1915+105 during a variability class transition

    Get PDF
    We present a detailed X-ray study of the microquasar GRS 1915+105 during a variability class transition observed in 2000 June with the PPCs of the Indian X-ray Astronomy Experiment. We supplement this observation with data from the RXTE archives. The source made a transition from a steady low-hard state to a regular oscillatory behaviour in the light curve known as bursts or class `rho' (Belloni et al. 2000) between 2000 May 11 and 17 and reverted back to the low-hard state on 2000 June 27. A gradual change in the burst recurrence time from about 75 s to about 40 s was observed which then increased to about 120 s during the ~ 40 days of class `rho'. The regular bursts disappeared from the X-ray light curves and the class transition was observed to occur within 1.5 hours on 2000 June 27 with the PPCs. A correlation is found between the observed QPO frequency at 5-8 Hz in the quiescent phase and the average X-ray intensity of the source during the class `rho'. We notice a strong similarity between the properties of the source during the class `rho' and those during the oscillatory phase of the observations of class `alpha'. From the timing and spectral analysis, it is found that the observed properties of the source over tens of days during the class `rho' are identical to those over a time scale of a few hundreds of seconds in the class `alpha'. Examining the light curves from the beginning of the RXTE/PCA and RXTE/ASM observations, it is found that the change of state from radio-quiet low-hard state to high state occurs through the X-ray classes `rho' and `alpha' which appear together during the state transition. It is further inferred that the source switches from low-hard state to the class `rho' through the intermediate class `alpha'.Comment: 10 pages with 9 figures, LaTex. To be appeared in MNRA

    Design of dimensional model for clinical data storage and analysis

    Get PDF
    Current research in the field of Life and Medical Sciences is generating chunk of data on daily basis. It has thus become a necessity to find solutions for efficient storage of this data, trying to correlate and extract knowledge from it. Clinical data generated in Hospitals, Clinics & Diagnostics centers is falling under a similar paradigm. Patient’s records in various hospitals are increasing at an exponential rate, thus adding to the problem of data management and storage. Major problem being faced corresponding to storage, is the varied dimensionality of the data, ranging from images to numerical form. Therefore there is a need for development of efficient data model which can handle this multi-dimensionality data issue and store the data with historical aspect. For the stated problem lying in façade of clinical informatics we propose a clinical dimensional model design which can be used for development of a clinical data mart. The model has been designed keeping in consideration temporal storage of patient's data with respect to all possible clinical parameters which can include both textual and image based data. Availability of said data for each patient can be then used for application of data mining techniques for finding the correlation of all the parameters at the level of individual and population
    corecore