40 research outputs found

    Robust vibration control of a flexible manipulator in presence of payload uncertainty

    Get PDF
    This paper presents the results of hybrid vibration controllers applied for vibration suppression of flexible manipulator. The model of the manipulator is assumed to be uncertain due to varying payload. To cater for the model uncertainty the proposed hybrid controller combines robust input shaping for command input with μ-controller applied for active vibration suppression using smart materials. Dependence of hybrid controller performance on design frequencies of input shaper is also studied. Results showed that the performance of hybrid controller is strongly dependent on the parameters used for designing input shaper, and the effectiveness of the hybrid controller can be substantially increased by judiciously selecting the design frequencies of input shaper. Effectiveness of the proposed controller is demonstrated by comparative studies with hybrid controllers formed by robust input shaping and PPF (positive position feedback) controller. Results are compared for suppressing vibrations resulting from slewing motion of manipulator, where the slewing motion is controlled by the PD controller. Results of comparisons showed that the μ-controller gave better performance in terms of settling time and energy consumption than those using PPF

    Active vibration control of a slewing spacecraft’s panel using H∞ control

    Get PDF
    Application of H∞ control for multimodal vibration suppression of a slewing spacecraft using piezoelectric actuators is presented in this paper. For treating vibration suppression independent of attitude control law while taking into account relative modal responses; a method for modeling effect of attitude maneuver excitations as modal disturbances is proposed. Commercial finite element software ANSYS is used for obtaining system model. Modifications of system model and selection of weights required for control synthesis are explained in detail. The method is applied for suppressing vibration of first two modes of a flexible spacecraft. Results showed effectiveness of the proposed method

    Intermediate ferroelectric orthorhombic and monoclinic MB phases in [110]- electric field cooled Pb(Mg1/3Nb2/3)O3-30%PbTiO3 crystals

    Full text link
    Structural phase transformations of [110] electric field cooled Pb(Mg1/3Nb2/3)O3-30%PbTiO3 (PMN-30%PT) crystals have been performed by x-ray diffraction in a field-cooled (FC) condition. A phase sequence of cubic(C)-tetragonal(T)-orthorhombic (O)-monoclinic (MB) was found on field-cooling (FC); and a R-MB-O one was observed with increasing field beginning from the zero field-cooled (ZFC) condition at room temperature. The application of the [110] electric field induced a dramatic change in the phase sequence in the FC condition, compared to the corresponding data for PMN-30%PT crystals in a [001] field, which shows that the phase sequence in the FC condition is altered by the crystallographic direction along which a modest electric field (E) is applied. Only when E is applied along [110] are intermediate O and MB phases observed.Comment: 10 pages, 8 figure

    Fe–Ga/Pb(Mg1/3Nb2/3)O3–PbTiO3 magnetoelectric laminate composites

    Get PDF
    We have found large magnetoelectric (ME) effects in long-type laminate composites of Fe–20%Ga magnetostrictive alloys and piezoelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. At lower frequencies, the ME voltage coefficient of a laminate with longitudinally magnetized and longitudinally polarized (i.e., L-L mode) layers was 1.41 V/Oe (or1.01 V/cm Oe). Near the natural resonant frequency ( ∼ 91 kHz) of the laminate, the ME voltage coefficients were found to be dramatically increased to 50.7 V/Oe (36.2 V/cm Oe)for the L-L mode. In addition, the laminate can detect a minute magnetic field as low as ∼ 2×10−12 T at resonance frequency, and ∼ 1×10−10 T at lower frequencies

    Robust Trajectory Estimation in Ballistic Phase using Out-of-Sequence High-degree Cubature Huber-based Filtering

    No full text

    Mixed-Degree Cubature H∞ Information Filter-Based Visual-Inertial Odometry

    No full text
    Visual–inertial odometry is an effective system for mobile robot navigation. This article presents an egomotion estimation method for a dual-sensor system consisting of a camera and an inertial measurement unit (IMU) based on the cubature information filter and H∞ filter. The intensity of the image was used as the measurement directly. The measurements from the two sensors were fused with a hybrid information filter in a tightly coupled way. The hybrid filter used the third-degree spherical-radial cubature rule in the time-update phase and the fifth-degree spherical simplex-radial cubature rule in the measurement-update phase for numerical stability. The robust H∞ filter was combined into the measurement-update phase of the cubature information filter framework for robustness toward non-Gaussian noises in the intensity measurements. The algorithm was evaluated on a common public dataset and compared to other visual navigation systems in terms of absolute and relative accuracy
    corecore