5 research outputs found

    Vitamin E Inhibits Osteoclastogenesis in Protecting Osteoporosis

    Get PDF
    The most common orthopedic condition affecting senior adults is osteoporosis, which is defined by a decrease in bone mass and strength as well as microstructural degradation that leads to fragility fractures. Bone remodeling is a well-planned, ongoing process that replaces deteriorated, old bone with new, healthy bone. Bone resorption and bone creation work together during the cycle of bone remodeling to preserve the bone’s volume and microarchitecture. The only bone-resorbing cells in the human body, mononuclear preosteoclasts fuse to form osteoclasts, are multinucleated cells. In numerous animal models or epidemiological studies, vitamin E’s anti-osteoporotic characteristics have been extensively described. This review aims to summarize recent developments in vitamin E’s molecular features as a bone-protective agent. In RANKL/RANK/OPG signaling pathway, vitamin E inhibits synthesis of RANKL, stimulation of c-Fos, and increase level of OPG. Vitamin E also inhibits inflammatory cytokines, such as TNF-α, IL-1, IL-6, IL-27, and MCP-1, negative regulating the JAK–STAT, NF-κB, MAPK signaling pathways. Additionally, vitamin E decreases malondialdehyde and increases superoxide dismutase, GPx and heme oxygenase-1, in suppressing osteoclasts. In this article, we aim to give readers the most recent information on the molecular pathways that vitamin E uses to enhance bone health

    circGprc5a Promoted Bladder Oncogenesis and Metastasis through Gprc5a-Targeting Peptide

    No full text
    Bladder cancer is a serious cancer in the world, especially in advanced countries. Bladder cancer stem cells (CSCs) drive bladder tumorigenesis and metastasis. Circular RNAs (circRNAs) are involved in many biological processes, but their roles in bladder oncogenesis and bladder CSCs are unclear. Here, we identified that circGprc5a is upregulated in bladder tumors and CSCs. circGpr5a knockdown impairs the self-renewal and metastasis of bladder CSCs, and its overexpression exerts an opposite role. circGpr5a has peptide-coding potential and functions through a peptide-dependent manner. circGprc5a-peptide binds to Gprc5a, a surface protein highly expressed in bladder CSCs. Gprc5a knockout inhibits the bladder CSC self-renewal and metastasis. circGprc5a-peptide-Gprc5a can be utilized to target bladder cancer and bladder CSCs. Keywords: bladder cancer, cancer stem cells, Gprc5a, peptid
    corecore