57 research outputs found

    Optimizing Digital Integrated Care via MicroĂą Randomized Trials

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144704/1/cpt1079.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144704/2/cpt1079_am.pd

    Dyadic Reinforcement Learning

    Full text link
    Mobile health aims to enhance health outcomes by delivering interventions to individuals as they go about their daily life. The involvement of care partners and social support networks often proves crucial in helping individuals managing burdensome medical conditions. This presents opportunities in mobile health to design interventions that target the dyadic relationship -- the relationship between a target person and their care partner -- with the aim of enhancing social support. In this paper, we develop dyadic RL, an online reinforcement learning algorithm designed to personalize intervention delivery based on contextual factors and past responses of a target person and their care partner. Here, multiple sets of interventions impact the dyad across multiple time intervals. The developed dyadic RL is Bayesian and hierarchical. We formally introduce the problem setup, develop dyadic RL and establish a regret bound. We demonstrate dyadic RL's empirical performance through simulation studies on both toy scenarios and on a realistic test bed constructed from data collected in a mobile health study

    SMART Binary: Sample Size Calculation for Comparing Adaptive Interventions in SMART studies with Longitudinal Binary Outcomes

    Full text link
    Sequential Multiple-Assignment Randomized Trials (SMARTs) play an increasingly important role in psychological and behavioral health research. This experimental approach enables researchers to answer scientific questions about how to sequence and match interventions to the unique, changing needs of individuals. A variety of sample size planning resources for SMART studies have been developed in recent years; these enable researchers to plan SMARTs for addressing different types of scientific questions. However, relatively limited attention has been given to planning SMARTs with binary (dichotomous) outcomes, which often require higher sample sizes relative to continuous outcomes. Existing resources for estimating sample size requirements for SMARTs with binary outcomes do not consider the potential to improve power by including a baseline measurement and/or multiple repeated outcome measurements. The current paper addresses this issue by providing sample size simulation code and approximate formulas for two-wave repeated measures binary outcomes (i.e., two measurement times for the outcome variable, before and after receiving the intervention). The simulation results agree well with the formulas. We also discuss how to use simulations to calculate power for studies with more than two outcome measurement occasions. The results show that having at least one repeated measurement of the outcome can substantially improve power under certain conditions.Comment: 73 pages, 2 figures, submitted to Multivariate Behavioral Researc

    Randomised trials for the Fitbit generation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116333/1/sign863.pd

    A Continuous-Time Dynamic Factor Model for Intensive Longitudinal Data Arising from Mobile Health Studies

    Full text link
    Intensive longitudinal data (ILD) collected in mobile health (mHealth) studies contain rich information on multiple outcomes measured frequently over time that have the potential to capture short-term and long-term dynamics. Motivated by an mHealth study of smoking cessation in which participants self-report the intensity of many emotions multiple times per day, we propose a dynamic factor model that summarizes the ILD as a low-dimensional, interpretable latent process. This model consists of two submodels: (i) a measurement submodel -- a factor model -- that summarizes the multivariate longitudinal outcome as lower-dimensional latent variables and (ii) a structural submodel -- an Ornstein-Uhlenbeck (OU) stochastic process -- that captures the temporal dynamics of the multivariate latent process in continuous time. We derive a closed-form likelihood for the marginal distribution of the outcome and the computationally-simpler sparse precision matrix for the OU process. We propose a block coordinate descent algorithm for estimation. Finally, we apply our method to the mHealth data to summarize the dynamics of 18 different emotions as two latent processes. These latent processes are interpreted by behavioral scientists as the psychological constructs of positive and negative affect and are key in understanding vulnerability to lapsing back to tobacco use among smokers attempting to quit.Comment: Main text is 19 pages with 4 figures and 1 table. Supporting material is 25 page

    To Prompt or Not to Prompt? A Microrandomized Trial of Time-Varying Push Notifications to Increase Proximal Engagement With a Mobile Health App

    Get PDF
    Copyright ©Niranjan Bidargaddi, Daniel Almirall, Susan Murphy, Inbal Nahum-Shani, Michael Kovalcik, Timothy Pituch, Haitham Maaieh, Victor Strecher. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 29.11.2018. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mhealth and uhealth, is properly cited. The complete bibliographic information, a link to the original publication on http://mhealth.jmir.org/, as well as this copyright and license information must be included.Background: Mobile health (mHealth) apps provide an opportunity for easy, just-in-time access to health promotion and self-management support. However, poor user engagement with these apps remains a significant unresolved challenge. Objective: This study aimed to assess the effect of sending versus not sending a push notification containing a contextually tailored health message on proximal engagement, measured here as self-monitoring via the app. Secondary aims were to examine whether this effect varies by the number of weeks enrolled in the program or by weekday versus weekend. An exploratory aim was to describe how the effect on proximal engagement differs between weekday versus weekend by the time of day. Methods: The study analyzes the causal effects of push notifications on proximal engagement in 1255 users of a commercial workplace well-being intervention app over 89 days. The app employs a microrandomized trial (MRT) design to send push notifications. At 1 of 6 times per day (8:30 am, 12:30 pm, 5:30 pm, 6:30 pm, 7:30 pm, and 8:30 pm; selected randomly), available users were randomized with equal probability to be sent or not sent a push notification containing a tailored health message. The primary outcome of interest was whether the user self-monitored behaviors and feelings at some time during the next 24 hours via the app. A generalization of log-linear regression analysis, adapted for use with data arising from an MRT, was used to examine the effect of sending a push notification versus not sending a push notification on the probability of engagement over the next 24 hours. Results: Users were estimated to be 3.9% more likely to engage with the app in the next 24 hours when a tailored health message was sent versus when it was not sent (risk ratio 1.039; 95% CI 1.01 to 1.08; P<.05). The effect of sending the message attenuated over the course of the study, but this effect was not statistically significant (P=.84). The effect of sending the message was greater on weekends than on weekdays, but the difference between these effects was not statistically significant (P=.18). When sent a tailored health message on weekends, the users were 8.7% more likely to engage with the app (95% CI 1.01 to 1.17), whereas on weekdays, the users were 2.5% more likely to engage with the app (95% CI 0.98 to 1.07). The effect of sending a tailored health message was greatest at 12:30 pm on weekends, when the users were 11.8% more likely to engage (90% CI 1.02 to 1.13). Conclusions: Sending a push notification containing a tailored health message was associated with greater engagement in an mHealth app. Results suggested that users are more likely to engage with the app within 24 hours when push notifications are sent at mid-day on weekends

    Time-varying model of engagement with digital self reporting: Evidence from smoking cessation longitudinal studies

    Get PDF
    ObjectiveInsufficient engagement is a critical barrier impacting the utility of digital interventions and mobile health assessments. As a result, engagement itself is increasingly becoming a target of studies and interventions. The purpose of this study is to investigate the dynamics of engagement in mobile health data collection by exploring whether, how, and why response to digital self-report prompts change over time in smoking cessation studies.MethodData from two ecological momentary assessment (EMA) studies of smoking cessation among diverse smokers attempting to quit (N = 573) with a total of 65,974 digital self-report prompts. We operationalize engagement with self-reporting in term of prompts delivered and prompt response to capture both broad and more granular engagement in self-reporting, respectively. The data were analyzed to describe trends in prompt delivered and prompt response over time. Time-varying effect modeling (TVEM) was employed to investigate the time-varying effects of response to previous prompt and the average response rate on the likelihood of current prompt response.ResultsAlthough prompt response rates were relatively stable over days in both studies, the proportion of participants with prompts delivered declined steadily over time in one of the studies, indicating that over time, fewer participants charged the device and kept it turned on (necessary to receive at least one prompt per day). Among those who did receive prompts, response rates were relatively stable. In both studies, there is a significant, positive and stable relationship between response to previous prompt and the likelihood of response to current prompt throughout all days of the study. The relationship between the average response rate prior to current prompt and the likelihood of responding to the current prompt was also positive, and increasing with time.ConclusionOur study highlights the importance of integrating various indicators to measure engagement in digital self-reporting. Both average response rate and response to previous prompt were highly predictive of response to the next prompt across days in the study. Dynamic patterns of engagement in digital self-reporting can inform the design of new strategies to promote and optimize engagement in digital interventions and mobile health studies
    • 

    corecore