26 research outputs found
Different mechanisms for resistance to trastuzumab versus lapatinib in HER2- positive breast cancers -- role of estrogen receptor and HER2 reactivation
Introduction: The human epidermal growth factor receptor 2 (HER2)-targeted therapies trastuzumab (T) and lapatinib (L) show high efficacy in patients with HER2-positive breast cancer, but resistance is prevalent. Here we investigate resistance mechanisms to each drug alone, or to their combination using a large panel of HER2-positive cell lines made resistant to these drugs.
Methods: Response to L + T treatment was characterized in a panel of 13 HER2-positive cell lines to identify lines that were de novo resistant. Acquired resistant lines were then established by long-term exposure to increasing drug concentrations. Levels and activity of HER2 and estrogen receptor (ER) pathways were determined by qRT-PCR, immunohistochemistry, and immunoblotting assays. Cell growth, proliferation, and apoptosis in parental cells and resistant derivatives were assessed in response to inhibition of HER or ER pathways, either pharmacologically (L, T, L + T, or fulvestrant) or by using siRNAs. Efficacy of combined endocrine and anti-HER2 therapies was studied in vivo using UACC-812 xenografts.
Results: ER or its downstream products increased in four out of the five ER+/HER2+ lines, and was evident in one of the two intrinsically resistant lines. In UACC-812 and BT474 parental and resistant derivatives, HER2 inhibition by T reactivated HER network activity to promote resistance. T-resistant lines remained sensitive to HER2 inhibition by either L or HER2 siRNA. With more complete HER2 blockade, resistance to L-containing regimens required the activation of a redundant survival pathway, ER, which was up-regulated and promoted survival via various Bcl2 family members. These L-and L + T-resistant lines were responsive to fulvestrant and to ER siRNA. However, after prolonged treatment with L, but not L + T, BT474 cells switched from depending on ER as a survival pathway, to relying again on the HER network (increased HER2, HER3, and receptor ligands) to overcome L's effects. The combination of endocrine and L + T HER2-targeted therapies achieved complete tumor regression and prevented development of resistance in UACC-812 xenografts.
Conclusions: Combined L + T treatment provides a more complete and stable inhibition of the HER network. With sustained HER2 inhibition, ER functions as a key escape/survival pathway in ER-positive/HER2-positive cells. Complete blockade of the HER network, together with ER inhibition, may provide optimal therapy in selected patients
HER2-family signalling mechanisms, clinical implications and targeting in breast cancer.
Approximately 20 % of human breast cancers (BC) overexpress HER2 protein, and HER2-positivity is associated with a worse prognosis. Although HER2-targeted therapies have significantly improved outcomes for HER2-positive BC patients, resistance to trastuzumab-based therapy remains a clinical problem. In order to better understand resistance to HER2-targeted therapies in HER2-positive BC, it is necessary to examine HER family signalling as a whole. An extensive literature search was carried out to critically assess the current knowledge of HER family signalling in HER2-positive BC and response to HER2-targeted therapy. Known mechanisms of trastuzumab resistance include reduced receptor-antibody binding (MUC4, p95HER2), increased signalling through alternative HER family receptor tyrosine kinases (RTK), altered intracellular signalling involving loss of PTEN, reduced p27kip1, or increased PI3K/AKT activity and altered signalling via non-HER family RTKs such as IGF1R. Emerging strategies to circumvent resistance to HER2-targeted therapies in HER2-positive BC include co-targeting HER2/PI3K, pan-HER family inhibition, and novel therapies such as T-DM1. There is evidence that immunity plays a key role in the efficacy of HER-targeted therapy, and efforts are being made to exploit the immune system in order to improve the efficacy of current anti-HER therapies. With our rapidly expanding understanding of HER2 signalling mechanisms along with the repertoire of HER family and other targeted therapies, it is likely that the near future holds further dramatic improvements to the prognosis of women with HER2-positive BC
Molecular targeted therapies for breast cancer treatment
Targeting the oestrogen receptor, HER2 (human epidermal growth factor receptor 2) and vascular endothelial growth factor has markedly improved breast cancer therapy. New targeted therapeutic approaches to induction of apoptosis or inhibition of anti-apoptosis, cell cycle progression, signal transduction and angiogenesis are described. The molecular pathways and their inhibitory or repair mechanisms are discussed in the preclinical and clinical settings
Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas
Trastuzumab resistance hampers its well-known efficacy to control HER2-positive breast cancer. The involvement of PI3K/Akt pathway in this mechanism is still not definitively confirmed. We selected 155 patients treated with trastuzumab after development of metastasis or as adjuvant/neoadjuvant therapy. We performed immunohistochemistry for HER2, ER/PR, epidermal growth factor 1-receptor (EGFR), α -insulin-like growth factor 1-receptor (IGF1R), phosphatase and tensin homologue (PTEN), p110 α, pAkt, pBad, pmTOR, pMAPK, MUC1, Ki67, p53 and p27; mutational analysis of PIK3CA and PTEN, and PTEN promoter hypermethylation. We found 46% ER/PR-positive tumours, overexpression of EGFR (15%), α -IGF1R (25%), p110 α (19%), pAkt (28%), pBad (22%), pmTOR (23%), pMAPK (24%), MUC1 (80%), PTEN loss (20%), and PTEN promoter hypermethylation (20%). PIK3CA and PTEN mutations were detected in 17% and 26% tumours, respectively. Patients receiving adjuvant trastuzumab with α -IGF1R or pBad overexpressing tumours presented shorter progression-free survival (PFS) (all P ⩽0.043). Also, p110 α and mTOR overexpression, liver and brain relapses implied poor overall survival (OS) (all P ⩽0.041). In patients with metastatic disease, decreased PFS correlated with p110 α expression (P =0.024), whereas for OS were the presence of vascular invasion and EGFR expression (P ⩽0.019; Cox analysis). Our results support that trastuzumab resistance mechanisms are related with deregulation of PTEN/PI3K/Akt/mTOR pathway, and/or EGFR and IGF1R overexpression in a subset of HER2-positive breast carcinomas
Modulation of MicroRNA-194 and cell migration by HER2-targeting trastuzumab in breast cancer
Conceived and designed the experiments: XFL GAC RCB. Performed the
experiments: XFL MIA WM RS MSN SZ. Analyzed the data: XFL SR.
Contributed reagents/materials/analysis tools: YW GAC. Wrote the paper: XFL RCB.Trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of the HER2 oncoprotein, can effectively target HER2-positive breast cancer through several mechanisms. Although the effects of trastuzumab on cancer cell proliferation, angiogenesis and apoptosis have been investigated in depth, the effect of trastuzumab on microRNA (miRNA) has not been extensively studied. We have performed miRNA microarray profiling before and after trastuzumab treatment in SKBr3 and BT474 human breast cancer cells that overexpress HER2. We found that trastuzumab treatment of SKBr3 cells significantly decreased five miRNAs and increased three others, whereas treatment of BT474 cells significantly decreased two miRNAs and increased nine. The only change in miRNA expression observed in both cell lines following trastuzumab treatment was upregulation of miRNA-194 (miR-194) that was further validated in vitro and in vivo. Forced expression of miR-194 in breast cancer cells that overexpress HER2 produced no effect on apoptosis, modest inhibition of proliferation, significant inhibition of cell migration/invasion in vitro and significant inhibition of xenograft growth in vivo. Conversely, knockdown of miR-194 promoted cell migration. Increased miR-194 expression markedly reduced levels of the cytoskeletal protein talin2 and specifically inhibited luciferase reporter activity of a talin2 wild-type 39-untranslated region, but not that of a mutant reporter, indicating that talin2 is a direct downstream target of miR-194. Trastuzumab treatment inhibited breast cancer cell migration and reduced talin2 expression in vitro and in vivo. Knockdown of talin2 inhibited cell migration/invasion. Knockdown of trastuzumab-induced miR-194 expression with a miR-194 inhibitor compromised trastuzumab-inhibited cell migration in HER2-overexpressing breast cancer cells. Consequently, trastuzumab treatment upregulates miR-194 expression and may exert its cell migration-inhibitory effect through miR-194-mediated downregulation of cytoskeleton protein talin2 in HER2-overexpressing human breast cancer cells.This work was supported by the Anne and Henry Zarrow Foundation, kind gifts from Stuart and Gaye Lynn Zarrow and from Mrs. Delores Wilkenfeld, the Laura and John Arnold Foundation, the RGK Foundation, and the MD Anderson NCI CCSG P30 CA16672. G.A.C. is supported as a Fellow at the University of Texas MD Anderson Research Trust, as a University of Texas System Regents Research Scholar and by the CLL Global Research Foundation
Present and future evolution of advanced breast cancer therapy
Although the introduction of novel therapies and drug combinations has improved the prognosis of metastatic breast cancer, the disease remains incurable. Increased knowledge of the biology and the molecular alterations in breast cancer has facilitated the design of targeted therapies. These agents include receptor and nonreceptor tyrosine kinase inhibitors (epidermal growth factor receptor family), intracellular signaling pathways (phosphatidylinositol-3-kinase, AKT, mammalian target of rapamycin) angiogenesis inhibitors and agents that interfere with DNA repair (poly(ADP-ribose) polymerase inhibitors). In the present review, we present the most promising studies of these new targeted therapies and novel combinations of targeted therapies with cytotoxic agents