34 research outputs found

    Clathrin heavy chain 22 contributes to the control of neuropeptide degradation and secretion during neuronal development.

    Get PDF
    The repertoire of cell types in the human nervous system arises through a highly orchestrated process, the complexity of which is still being discovered. Here, we present evidence that CHC22 has a non-redundant role in an early stage of neural precursor differentiation, providing a potential explanation of why CHC22 deficient patients are unable to feel touch or pain. We show the CHC22 effect on neural differentiation is independent of the more common clathrin heavy chain CHC17, and that CHC22-dependent differentiation is mediated through an autocrine/paracrine mechanism. Using quantitative proteomics, we define the composition of clathrin-coated vesicles in SH-SY5Y cells, and determine proteome changes induced by CHC22 depletion. In the absence of CHC22 a subset of dense core granule (DCG) neuropeptides accumulated, were processed into biologically active 'mature' forms, and secreted in sufficient quantity to trigger neural differentiation. When CHC22 is present, however, these DCG neuropeptides are directed to the lysosome and degraded, thus preventing differentiation. This suggests that the brief reduction seen in CHC22 expression in sensory neural precursors may license a step in neuron precursor neurodevelopment; and that this step is mediated through control of a novel neuropeptide processing pathway

    Folliculin interacts with p0071 (plakophilin-4) and deficiency is associated with disordered rhoa signalling, epithelial polarization and cytokinesis

    Get PDF
    Inherited mutations in the folliculin (FLCN) gene cause the Birt-Hogg-Dubé syndrome of familial hair follicle tumours (fibrofolliculomas), lung cysts and kidney tumours. Though folliculin has features of a tumour suppressor, the precise function of the FLCN gene product is not well characterized. We identified plakophilin-4 (p0071) as a potential novel folliculin interacting protein by yeast two-hybrid analysis. We confirmed the interaction of folliculin with p0071 by co-immunoprecipitation studies and, in view of previous studies linking p0071 to the regulation of rho-signalling, cytokinesis and intercellular junction formation, we investigated the effect of cell folliculin status on p0071-related functions. Folliculin and p0071 partially co-localized at cell junctions and in mitotic cells, at the midbody during cytokinesis. Previously, p0071 has been reported to regulate RhoA signalling during cytokinesis and we found that folliculin deficiency was associated with increased expression and activity of RhoA and evidence of disordered cytokinesis. Treatment of folliculin-deficient cells with a downstream inhibitor of RhoA signalling (the ROCK inhibitor Y-27632) reversed the increased cell migration phenotype observed in folliculin-deficient cells. Deficiency of folliculin and of p0071 resulted in tight junction defects and mislocalization of E-cadherin in mouse inner medullary collecting duct-3 renal tubular cells. These findings suggest that aspects of folliculin tumour suppressor function are linked to interaction with p0071 and the regulation of RhoA signalling

    A novel disorder reveals clathrin heavy chain-22 is essential for human pain and touch development

    Get PDF
    Congenital inability to feel pain is very rare but the identification of causative genes has yielded significant insights into pain pathways and also novel targets for pain treatment. We report a novel recessive disorder characterized by congenital insensitivity to pain, inability to feel touch, and cognitive delay. Affected individuals harboured a homozygous missense mutation in CLTCL1 encoding the CHC22 clathrin heavy chain, p.E330K, which we demonstrate to have a functional effect on the protein. We found that CLTCL1 is significantly upregulated in the developing human brain, displaying an expression pattern suggestive of an early neurodevelopmental role. Guided by the disease phenotype, we investigated the role of CHC22 in two human neural crest differentiation systems; human induced pluripotent stem cell-derived nociceptors and TRKB-dependant SH-SY5Y cells. In both there was a significant downregulation of CHC22 upon the onset of neural differentiation. Furthermore, knockdown of CHC22 induced neurite outgrowth in neural precursor cells, which was rescued by stable overexpression of small interfering RNA-resistant CHC22, but not by mutant CHC22. Similarly, overexpression of wild-type, but not mutant, CHC22 blocked neurite outgrowth in cells treated with retinoic acid. These results reveal an essential and non-redundant role for CHC22 in neural crest development and in the genesis of pain and touch sensing neurons

    A Comprehensive Functional Analysis of NTRK1 Missense Mutations Causing Hereditary Sensory and Autonomic Neuropathy Type IV (HSAN IV).

    Get PDF
    Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is an autosomal recessive disorder characterized by a complete lack of pain perception and anhidrosis. Here, we studied a cohort of seven patients with HSAN IV and describe a comprehensive functional analysis of seven novel NTRK1 missense mutations, c.1550G >A, c.1565G >A, c.1970T >C, c.2096T >C, c.2254T >A, c.2288G >C, and c.2311C >T, corresponding to p.G517E, p.G522E, p.L657P, p.I699T, p.C752S, p.C763S, and p.R771C, all of which were predicted pathogenic by in silico analysis. The results allowed us to assess the pathogenicity of each mutation and to gain novel insights into tropomyosin receptor kinase A (TRKA) downstream signaling. Each mutation was systematically analyzed for TRKA glycosylation states, intracellular and cell membrane expression patterns, nerve growth factor stimulated TRKA autophosphorylation, TRKA-Y496 phosphorylation, PLCÎł activity, and neurite outgrowth. We showed a diverse range of functional effects: one mutation appeared fully functional, another had partial activity in all assays, one mutation affected only the PLCÎł pathway and four mutations were proved null in all assays. Thus, we conclude that complete abolition of TRKA kinase activity is not the only pathogenic mechanism underlying HSAN IV. By corollary, the assessment of the clinical pathogenicity of HSAN IV mutations is more complex than initially predicted and requires a multifaceted approach.We acknowledge funding from the Medical Research Council (SSS and MSN) and Cambridge Biomedical Research Campus (Y-CC)

    Human Labor Pain Is Influenced by the Voltage-Gated Potassium Channel KV6.4 Subunit.

    Get PDF
    By studying healthy women who do not request analgesia during their first delivery, we investigate genetic effects on labor pain. Such women have normal sensory and psychometric test results, except for significantly higher cuff pressure pain. We find an excess of heterozygotes carrying the rare allele of SNP rs140124801 in KCNG4. The rare variant KV6.4-Met419 has a dominant-negative effect and cannot modulate the voltage dependence of KV2.1 inactivation because it fails to traffic to the plasma membrane. In vivo, Kcng4 (KV6.4) expression occurs in 40% of retrograde-labeled mouse uterine sensory neurons, all of which express KV2.1, and over 90% express the nociceptor genes Trpv1 and Scn10a. In neurons overexpressing KV6.4-Met419, the voltage dependence of inactivation for KV2.1 is more depolarized compared with neurons overexpressing KV6.4. Finally, KV6.4-Met419-overexpressing neurons have a higher action potential threshold. We conclude that KV6.4 can influence human labor pain by modulating the excitability of uterine nociceptors.MCL, DKM, DW, and CGW acknowledge funding from Addenbrooke’s Charitable Trust and the NIHR Cambridge Biomedical Research Centre. MN was funded by the Wellcome Trust (200183/Z/15/Z); JH and ESS by a Rosetrees Postdoctoral Grant (A1296) and the BBSRC (BB/R006210/1); GC and ESS by Versus Arthritis Grants (RG21973); VBL and FR by the Wellcome Trust (106262/Z/14/Z and 106263/Z/14/Z) and a joint MRC programme within the Metabolic Diseases Unit (MRC_MC_UU_12012/3). EF, GI and CB were funded by the Cambridge NIHR Biomedical Research Centre Integrative Genomics theme and LAP by a BBSRC-funded studentship (BB/M011194/1)

    Evidence of a genetic background predisposing to complex regional pain syndrome type 1.

    Get PDF
    BackgroundComplex regional pain syndrome type 1 (CRPS-1) is a rare, disabling and sometimes chronic disorder usually arising after a trauma. This exploratory study examined whether patients with chronic CRPS-1 have a different genetic profile compared with those who do not have the condition.MethodsExome sequencing was performed to seek altered non-synonymous SNP allele frequencies in a discovery cohort of well-characterised patients with chronic CRPS-1 (n=34) compared with population databases. Identified SNP alleles were confirmed by Sanger sequencing and sought in a replication cohort (n=50). Gene expression of peripheral blood macrophages was assessed.ResultsIn the discovery cohort, the rare allele frequencies of four non-synonymous SNPs were statistically increased. The replication cohort confirmed this finding. In a chronic pain cohort, these alleles were not overexpressed. In total, 25 out of 84 (29.8%) patients with CRPS-1 expressed a rare allele. The SNPs were rs41289586 in ANO10, rs28360457 in P2RX7, rs1126930 in PRKAG1 and rs80308281 in SLC12A9. Males were more likely than females to have a rare SNP allele, 8 out of 14 (57.1%) vs 17 out of 70 (24.3%) (Fisher's p=0.023). ANO10, P2RX7, PRKAG1 and SLC12A9 were all expressed in macrophages from healthy human controls.ConclusionA single SNP in each of the genes ANO10, P2RX7, PRKAG1 and SLC12A9 was associated with developing chronic CRPS-1, with more males than females expressing these rare alleles. Our work suggests the possibility that a permissive genetic background is an important factor in the development of CRPS-1

    Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication.

    Get PDF
    A recent outbreak of Zika virus in Brazil has led to a simultaneous increase in reports of neonatal microcephaly. Zika targets cerebral neural precursors, a cell population essential for cortical development, but the cause of this neurotropism remains obscure. Here we report that the neural RNA-binding protein Musashi-1 (MSI1) interacts with the Zika genome and enables viral replication. Zika infection disrupts the binding of MSI1 to its endogenous targets, thereby deregulating expression of factors implicated in neural stem cell function. We further show that MSI1 is highly expressed in neural progenitors of the human embryonic brain and is mutated in individuals with autosomal recessive primary microcephaly. Selective MSI1 expression in neural precursors could therefore explain the exceptional vulnerability of these cells to Zika infection.The authors are indebted to Alain Kohl (Centre for Virus Research, University of Glasgow) and Lindomar J. Pena and Rafael Oliveira de Freitas França, Fiocruz Recife, Pernambuco, Brazil, for the provision of PE243 ZIKV RNA used to generate the virus stock. We would like to thank and acknowledge Steve Lisgo for the expert provision of human embryonic histology sections through the Human Developmental Biology Resource (HDBR) at the University of Newcastle funded by a joint UK MRC/Wellcome Trust grant (099175/Z/12/Z). We would like to thank Leanna Smith for her assistance with homology modeling, Guillaume van Zande for his help and the patients’ families for their participation. The National Research Ethics Service Committee, East of England - Cambridge Central, UK (C.G. Woods, REC 05/Q0108/402) approved the informed consent to enter the study. We are grateful for expert help by the CRUK CI Core Facilities. I.G. and A. E. F are Wellcome Trust Senior Fellows. I.G. was supported by research grants 097997/Z/11/A and 097997/Z/11/Z, whereas A. E. F by grant 106207. M.S.N was funded by the Wellcome Trust (200183/Z/15/Z) and T. R. S is a Wellcome Trust Henry Dale Fellow (202471/Z/16/Z). This work was made possible by funding from Cancer Research UK C14303/A17197 to FG and C24461/A12772 to R.B. F.G. and C.G.W. acknowledge support from NIHR Cambridge Biomedical Research Centre, the University of Cambridge and Hutchison Whampoa Ltd
    corecore