3 research outputs found

    Surface Plasmon Resonance Biosensor Based Fragment Screening Using Acetylcholine Binding Protein Identifies Ligand Efficiency Hot Spots (LE Hot Spots) by Deconstruction of Nicotinic Acetylcholine Receptor alpha 7 Ligands

    No full text
    The soluble acetylcholine binding protein (AChBP) is a homologue of the ligand-binding domain of the nicotinic acetylcholine receptors (nAChR). To guide future fragment-screening using surface plasmon resonance (SPR) biosensor technology as a label-free, direct binding, biophysical screening assay, a focused fragment library was generated based on deconstruction of a set of α7 nAChR selective quinuclidine containing ligands with nanomolar affinities. The interaction characteristics of the fragments and the parent compounds with AChBP were evaluated using an SPR biosensor assay. The data obtained from this direct binding assay correlated well with data from the reference radioligand displacement assay. Ligand efficiencies for different (structural) groups of fragments in the library were correlated to binding with distinct regions of the binding pocket, thereby identifying ligand efficiency hot spots (LE hot spots). These hot spots can be used to identity the most promising hit fragments in a large scale fragment library screen. © 2010 American Chemical Society

    Nanofractionation Spotter Technology for Rapid Contact less and High-Resolution Deposition of LC Eluent for Further Off-Line Analysis

    No full text
    The development of a contactless postcolumn spotter technology capable of rapidly and accurately depositing LC eluent onto another platform (e.g., 1536-well microtiter plates) is described. Many detection methodologies are suitable for online analysis, such as mass spectrometry, UV-vis, and fluorescence. In some cases, when online analysis is less suitable, off-line postcolumn analysis is the methodology of choice and usually relies on LC-based fractionation prior to detection (e.g., MALDI-MS, Raman spectrsocopy, biochemical assays). As fractionation generally involves loss in resolution, the technology described here allows high-resolution contactless fractionation by tailoring the fractionation frequency to the chromatographic peaks and mixing in of postcolumn reagents. Droplet ejection at frequencies of at least 6 Hz could be performed in the nanoliter to low microliter range with repeatabilities of ∼6%. Furthermore, multiple droplets can be ejected at the same position thereby allowing adjustment of fractionation volume and speed. The technology was evaluated, optimized, and validated prior to two proof-of-principle demonstrations comprising off-line chemical detection of injected fluorescein and off-line postcolumn biochemical detection of acetylcholine-binding protein ligands, both based on 1536-well plate reader analysis. © 2010 American Chemical Society

    Fragment growing induces conformational changes in acetylcholine-binding protein: A structural and thermodynamic analysis

    No full text
    Optimization of fragment hits toward high-affinity lead compounds is a crucial aspect of fragment-based drug discovery (FBDD). In the current study, we have successfully optimized a fragment by growing into a ligand-inducible subpocket of the binding site of acetylcholine-binding protein (AChBP). This protein is a soluble homologue of the ligand binding domain (LBD) of Cys-loop receptors. The fragment optimization was monitored with X-ray structures of ligand complexes and systematic thermodynamic analyses using surface plasmon resonance (SPR) biosensor analysis and isothermal titration calorimetry (ITC). Using site-directed mutagenesis and AChBP from different species, we find that specific changes in thermodynamic binding profiles, are indicative of interactions with the ligand-inducible subpocket of AChBP. This study illustrates that thermodynamic analysis provides valuable information on ligand binding modes and is complementary to affinity data when guiding rational structure- and fragment-based discovery approaches
    corecore