3 research outputs found

    Improving Rabbit Doe Metabolism and Whole Reproductive Cycle Outcomes via Fatty Acid-Rich Moringa oleifera Leaf Extract Supplementation in Free and Nano-Encapsulated Forms

    No full text
    The effects of free and nano-encapsulated ME supplementations on the metabolism, immunity, milk production and composition, and reproductive performance of rabbit does during premating, mating, pregnancy, and lactation were investigated. Multiparous rabbit does (n = 26 per group) received 50 mg of free ME (FME) daily, 25 mg of nano-encapsulated ME (HNME), or 10 mg of nano-encapsulated ME (LNME) per kilogram of body weight or were not supplemented (C) during a whole reproductive cycle. The ME contained 30 fatty acids with 54.27% total unsaturated fatty acids (USFAs). The fatty acid encapsulation efficiency of alginate nanoparticles was 70.46%. Compared with the C group, rabbits in all ME treatments had significantly increased body weight, feed intake, and glucose concentration and significantly decreased non-esterified free fatty acids and β-hydroxybutyrate concentrations. Rabbits supplemented with ME also had significantly increased white blood cell counts, phagocytic activity, lysozyme activity, and immunoglobulin G and decreased interleukin-1β concentrations. Moreover, ME supplementation significantly increased the concentrations of colostrum immunoglobulins, milk yield and energy content, and milk USFAs (omega-3 and 6). Rabbit does in the ME treatments had significantly higher conception and parturition rates and better litter characteristics than the C rabbit does. These results demonstrate the positive role of ME fatty acids on the health status and productive and reproductive performance of rabbit does at different physiological stages. Compared with the FME treatment, these parameters were further improved in rabbits that received nano-encapsulated ME at lower doses, illustrating how nano-encapsulation technology improves the bioavailability of ME

    Effects of a Nanoencapsulated Moringa Leaf Ethanolic Extract on the Physiology, Metabolism and Reproductive Performance of Rabbit Does during Summer

    No full text
    This study investigated the effect of Moringa leaf ethanolic extract (MLEE) on heat-tolerance variables and the reproductive performance of rabbit does bred under hot climate conditions. Additionally, the effect of nanoencapsulation technology on the biological efficiency of MLEE was considered. A total of 56 rabbit does were randomly divided into four experimental groups and treated with 50 mg/kg body weight (BW) nonencapsulated MLEE, 25 or 10 mg/kg BW nanoencapsulated MLEE, or not treated (Control, C). The treatments continued for 50 days, including mating and pregnancy times. Physiological and hematochemical variables, hormonal profiles, and reproductive performance (kindling rate and litter characteristics) were determined. The active components of MLEE were identified. The results indicated that MLEE has 30 active components. All MLEE-based treatments reduced heat-stress-related indicators, such as rectal temperatures, respiratory rates and heart rate; improved hematochemical attributes, redox status, and hormones (progesterone and prolactin); and increased the total litter size, the kindling rate, litter size at birth and litter weight at birth. Adding MLEE can alleviate the negative impacts of heat stress by improving metabolism, redox status, and hormonal balance during pregnancy. These effects were seen whether MLLE was in free or encapsulated forms. However, the use of nanoencapsulated MLEE allowed 80% reduction (10 mg/kg BW) in the optimal dose (50 mg/kg BW) without affecting the efficiency of the treatment. These results support the importance of nanoencapsulation technology in improving the bioavailability of active components when they are orally administered

    Effect of Nanoencapsulated Alginate-Synbiotic on Gut Microflora Balance, Immunity, and Growth Performance of Growing Rabbits

    No full text
    A synbiotic comprising Saccharomyces cerevisiae yeast (SCY) and Moringa oleifera leaf extract (MOLE) has been encapsulated using nanotechnology. This duo is used as a dietary supplement for growing rabbits. Physicochemical analyses, in vitro antimicrobial activity, and gastrointestinal system evaluation were used to evaluate the quality of the nanofabricated synbiotic. The in vivo study was conducted using 40-day-old male growing rabbits (n = 16 rabbits/group) to evaluate the effect of the nanofabricated synbiotic on the health and growth performance of examined rabbits. Rabbits were equally allocated into four groups; (a) NCS, which received a basal diet supplemented with a noncapsulated 11 × 1012 CFU SCY + 0.15 g MOLE/kg diet, (b) LCS: those receiving a nanoencapsulated 5.5 × 1012 CFU SCY + 0.075 g MOLE/kg diet, (c) HCS: those receiving an 11 × 1012 CFU SCY + 0.15 g MOLE/kg diet, and (d) CON: those receiving a basal diet without treatment (control). The treatments continued from day 40 to day 89 of age. During the experimental period, growth performance variables, including body weight (BW), feed consumption, BW gain, and feed conversion ratio were recorded weekly. Blood samples were collected on day 40 of age and immediately before the start of the treatments to confirm the homogeneity of rabbits among groups. On day 89 of age, blood samples, intestinal, and cecal samples were individually collected from eight randomly selected rabbits. The size and polydispersity index of the nanofabricated synbiotic were 51.38 nm and 0.177, respectively. Results revealed that the encapsulation process significantly improved yeast survival through the gastrointestinal tract, specifically in stomach acidic conditions, and significantly increased in vitro inhibitory activities against tested pathogens. Furthermore, treatments had no negative effects on hematobiochemical variables but significantly improved levels of blood plasma, total protein, and insulin-like growth factor-l. Compared to the CON, NCS, and LCS treatments, the HCS treatment increased the amount of intestinal and cecal yeast cells (p Lactobacillus bacteria (p Salmonella (p Coliform (p = 0.08) bacteria. Likewise, both LCS and HCS significantly improved the small intestine and cecum lengths compared to CON and NCS. The HCS treatment also significantly improved BW gain and feed conversion compared to CON treatment, whereas the NCS and LCS treatments showed intermediate values. Conclusively, the nanoencapsulation process improved the biological efficiency of the innovative synbiotic used in this study. A high dose of encapsulated synbiotic balanced the gut microflora, resulting in the growth of rabbits during the fattening period
    corecore