11 research outputs found

    Randomized Clinical Trial of High-Dose Rifampicin With or Without Levofloxacin Versus Standard of Care for Pediatric Tuberculous Meningitis: The TBM-KIDS Trial

    Get PDF
    Background. Pediatric tuberculous meningitis (TBM) commonly causes death or disability. In adults, high-dose rifampicin may reduce mortality. The role of fluoroquinolones remains unclear. There have been no antimicrobial treatment trials for pediatric TBM. Methods. TBM-KIDS was a phase 2 open-label randomized trial among children with TBM in India and Malawi. Participants received isoniazid and pyrazinamide plus: (i) high-dose rifampicin (30 mg/kg) and ethambutol (R30HZE, arm 1); (ii) high-dose rifampicin and levofloxacin (R30HZL, arm 2); or (iii) standard-dose rifampicin and ethambutol (R15HZE, arm 3) for 8 weeks, followed by 10 months of standard treatment. Functional and neurocognitive outcomes were measured longitudinally using Modified Rankin Scale (MRS) and Mullen Scales of Early Learning (MSEL). Results. Of 2487 children prescreened, 79 were screened and 37 enrolled. Median age was 72 months; 49%, 43%, and 8% had stage I, II, and III disease, respectively. Grade 3 or higher adverse events occurred in 58%, 55%, and 36% of children in arms 1, 2, and 3, with 1 death (arm 1) and 6 early treatment discontinuations (4 in arm 1, 1 each in arms 2 and 3). By week 8, all children recovered to MRS score of 0 or 1. Average MSEL scores were significantly better in arm 1 than arm 3 in fine motor, receptive language, and expressive language domains (P < .01). Conclusions. In a pediatric TBM trial, functional outcomes were excellent overall. The trend toward higher frequency of adverse events but better neurocognitive outcomes in children receiving high-dose rifampicin requires confirmation in a larger trial. Clinical Trials Registration. NCT02958709

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Overview Of Sims-Based Experimental Studies Of Tracer Diffusion In Solids And Application To Mg Self-Diffusion

    No full text
    Tracer diffusivities provide the most fundamental information on diffusion in materials, and are the foundation of robust diffusion databases that enable the use of the Onsager phenomenological formalism with no major assumptions. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS)-based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. An overview of the thin-film method for tracer diffusion studies using stable isotopes is provided. Experimental procedures and techniques for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-high vacuum system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin-film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is demonstrated. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (Trans. AIME 250:1021-1025, 1954) was found to be a good representation of both types of diffusion data over a broad range of temperatures between 250 and 627 °C (523 and 900 K)

    Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples

    No full text
    Increasing use and development of lightweight Mgalloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As property enhancing components, Al and Zn are two of the most important and common alloying elements for Mg-alloys. We have investigated the concentration dependent interdiffusion of Al and Zn in Mg using diffusion couples of pure polycrystalline Mg mated to Mg solid solutions containing either <9 at.% Al or <3 at.% Zn. Concentration profiles were determined by electron micro-probe microanalysis of the diffusion zone. The interdiffusion coefficients were determined by the classical Boltzmann-Matano method within the Mg solid solution. As the concentration of Al or Zn approaches the dilute ends, we employ an analytical approach based on the Hall method to estimate the impurity diffusion coefficients. Results of Al and Zn impurity diffusion in Mg are reported and compared to published impurity diffusion coefficients typically determined by thin film techniques

    Overview of SIMS-based experimental studies of tracer diffusion in solids and application to Mg self-diffusion

    No full text
    Tracer diffusivities provide the most fundamental information on diffusion in materials, and are the foundation of robust diffusion databases that enable the use of the Onsager phenomenological formalism with no major assumptions. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS)-based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. An overview of the thin-film method for tracer diffusion studies using stable isotopes is provided. Experimental procedures and techniques for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-high vacuum system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin-film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is demonstrated. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (Trans. AIME 250:1021-1025, 1954) was found to be a good representation of both types of diffusion data over a broad range of temperatures between 250 and 627°C (523 and 900 K)

    Interdiffusion in the Mg-Al System and Intrinsic Diffusion in beta-Mg2Al3

    No full text
    Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96 pct) and Al (99.999 pct). Diffusion anneals were carried out at 573 K, 623 K and 673 K (300 A degrees C, 350 A degrees C and 400 A degrees C) for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were used to identify the formation of the intermetallic phases, gamma-Mg17Al12, and beta-Mg2Al3, as well as the absence of the epsilon-Mg23Al30 in the diffusion couples. The thicknesses of the gamma-Mg17Al12 and beta-Mg2Al3 phases were measured and the parabolic growth constants were calculated to determine the activation energies for growth. Concentration profiles were determined with electron microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, gamma-Mg17Al12, beta-Mg2Al3, and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Integrated and average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the beta-Mg2Al3 phase, followed by gamma-Mg17Al12, Al-solid solution, and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann\u27s analysis (e.g., marker plane) were determined for the similar to Mg-62 at. pct Al in the beta-Mg2Al3 phase. Activation energies and the pre-exponential factors for the interdiffusion and intrinsic diffusion coefficients were calculated for the temperature range examined. The beta-Mg2Al3 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the beta-Mg2Al3 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared with the available self-diffusion and impurity diffusion data from the literature. Thermodynamic factor, tracer diffusion coefficients, and atomic mobilities at the marker plane composition were approximated using the available literature values of Mg activity in the beta-Mg2Al3 phase
    corecore