11,024 research outputs found
Helicopter human factors research
Helicopter flight is among the most demanding of all human-machine integrations. The inherent manual control complexities of rotorcraft are made even more challenging by the small margin for error created in certain operations, such as nap-of-the-Earth (NOE) flight, by the proximity of the terrain. Accident data recount numerous examples of unintended conflict between helicopters and terrain and attest to the perceptual and control difficulties associated with low altitude flight tasks. Ames Research Center, in cooperation with the U.S. Army Aeroflightdynamics Directorate, has initiated an ambitious research program aimed at increasing safety margins for both civilian and military rotorcraft operations. The program is broad, fundamental, and focused on the development of scientific understandings and technological countermeasures. Research being conducted in several areas is reviewed: workload assessment, prediction, and measure validation; development of advanced displays and effective pilot/automation interfaces; identification of visual cues necessary for low-level, low-visibility flight and modeling of visual flight-path control; and pilot training
Plasma catecholamines during activation of the sympathetic nervous system in a patient with Shy-Drager syndrome.
Plasma catecholamines and circulation parameters were studied in a patient with a Shy-Drager syndrome. Basal values of free noradrenaline and dopamine were within the normal range, whereas the adrenaline level was decreased. The response of plasma catecholamines to different kinds of physical activity was pathological. The inability to maintain elevated catecholamine levels during prolonged activity corresponded to impaired circulatory regulation and may provide an additional tool for diagnosis and monitoring of the Shy-Drager syndrome
Application of laminar flow control to supersonic transport configurations
The feasibility and impact of implementing a laminar flow control system on a supersonic transport configuration were investigated. A hybrid laminar flow control scheme consisting of suction controlled and natural laminar flow was developed for a double-delta type wing planform. The required suction flow rates were determined from boundary layer stability analyses using representative wing pressure distributions. A preliminary design of structural modifications needed to accommodate suction through a perforated titanium skin was carried out together with the ducting and systems needed to collect, compress and discharge the suction air. The benefits of reduced aerodynamic drag were weighed against the weight, volume and power requirement penalties of suction system installation in a mission performance and sizing program to assess the net benefits. The study showed a feasibility of achieving significant laminarization of the wing surface by use of a hybrid scheme, leading to an 8.2 percent reduction in the cruise drag. This resulted in an 8.5 percent reduction in the maximum takeoff weight and a 12 percent reduction in the fuel burn after the inclusion of the LFC system installation penalties. Several research needs were identified for a resolution of aerodynamics, structural and systems issues before these potential benefits could be realized in a practical system
Winning strategies in congested traffic
One-directional traffic on two-lanes is modeled in the framework of a
spring-block type model. A fraction of the cars are allowed to change
lanes, following simple dynamical rules, while the other cars keep their
initial lane. The advance of cars, starting from equivalent positions and
following the two driving strategies is studied and compared. As a function of
the parameter the winning probability and the average gain in the
advancement for the lane-changing strategy is computed. An interesting
phase-transition like behavior is revealed and conclusions are drawn regarding
the conditions when the lane changing strategy is the better option for the
drivers.Comment: 5 pages, 5 figure
Finite Mixture Analysis of Beauty-Contest Data from Multiple Samples
This paper develops a finite mixture distribution analysis of Beauty- Contest data obtained from diverse groups of experiments. ML estimation using the EM approach provides estimates for the means and variances of the component distributions, which are common to all the groups, and estimates of the mixing proportions, which are specific to each group. This estimation is performed without imposing constraints on the parameters of the composing distributions. The statistical analysis indicates that many individuals follow a common pattern of reasoning described as iterated best reply (degenerate), and shows that the proportions of people thinking at different levels of depth vary across groups.Beauty-Contest experiments, reasoning hierarchy, finite mixture distribution, EM algorithm
Discrete stochastic models for traffic flow
We investigate a probabilistic cellular automaton model which has been
introduced recently. This model describes single-lane traffic flow on a ring
and generalizes the asymmetric exclusion process models. We study the
equilibrium properties and calculate the so-called fundamental diagrams (flow
vs.\ density) for parallel dynamics. This is done numerically by computer
simulations of the model and by means of an improved mean-field approximation
which takes into account short-range correlations. For cars with maximum
velocity 1 the simplest non-trivial approximation gives the exact result. For
higher velocities the analytical results, obtained by iterated application of
the approximation scheme, are in excellent agreement with the numerical
simulations.Comment: Revtex, 30 pages, full postscript version (including figures)
available by anonymous ftp from "fileserv1.mi.uni-koeln.de" in the directory
"pub/incoming/" paper accepted for publication in Phys.Rev.
The Effect of absorbing sites on the one-dimensional cellular automaton traffic flow with open boundaries
The effect of the absorbing sites with an absorbing rate , in both
one absorbing site (one way out) and two absorbing sites (two ways out) in a
road, on the traffic flow phase transition is investigated using numerical
simulations in the one-dimensional cellular automaton traffic flow model with
open boundaries using parallel dynamics.In the case of one way out, there exist
a critical position of the way out below which the current is
constant for and decreases when increasing
for . When the way out is located at a
position greater than , the current increases with for
and becomes constant for any value of
greater than . While, when the way out is located at any position
between and (), the current increases,
for , with and becomes constant for
and decreases with for
. In the later case the density undergoes two
successive first order transitions; from high density to maximal current phase
at and from intermediate density to the low one at
. In the case of two ways out located respectively
at the positions and , the two successive transitions occur
only when the distance - separating the two ways is smaller than
a critical distance . Phase diagrams in the (),
() and () planes are established. It is found
that the transitions between Free traffic, Congested traffic and maximal
current phase are first order
Intruders in the Dust: Air-Driven Granular Size Separation
Using MRI and high-speed video we investigate the motion of a large intruder
particle inside a vertically shaken bed of smaller particles. We find a
pronounced, non-monotonic density dependence, with both light and heavy
intruders moving faster than those whose density is approximately that of the
granular bed. For light intruders, we furthermore observe either rising or
sinking behavior, depending on intruder starting height, boundary condition and
interstitial gas pressure. We map out the phase boundary delineating the rising
and sinking regimes. A simple model can account for much of the observed
behavior and show how the two regimes are connected by considering pressure
gradients across the granular bed during a shaking cycle.Comment: 5 pages, 4 figure
Coarse-Grained Modeling of Genetic Circuits as a Function of the Inherent Time Scales
From a coarse-grained perspective the motif of a self-activating species,
activating a second species which acts as its own repressor, is widely found in
biological systems, in particular in genetic systems with inherent oscillatory
behavior. Here we consider a specific realization of this motif as a genetic
circuit, in which genes are described as directly producing proteins, leaving
out the intermediate step of mRNA production. We focus on the effect that
inherent time scales on the underlying fine-grained scale can have on the
bifurcation patterns on a coarser scale in time. Time scales are set by the
binding and unbinding rates of the transcription factors to the promoter
regions of the genes. Depending on the ratio of these rates to the decay times
of the proteins, the appropriate averaging procedure for obtaining a
coarse-grained description changes and leads to sets of deterministic
equations, which differ in their bifurcation structure. In particular the
desired intermediate range of regular limit cycles fades away when the binding
rates of genes are of the same order or less than the decay time of at least
one of the proteins. Our analysis illustrates that the common topology of the
widely found motif alone does not necessarily imply universal features in the
dynamics.Comment: 29 pages, 16 figure
Subdiffusion and cage effect in a sheared granular material
We investigate experimentally the diffusion properties of a bidimensional
bidisperse dry granular material under quasistatic cyclic shear.The comparison
of these properties with results obtained both in computer simulations of hard
spheres systems and Lenard-Jones liquids and experiments on colloidal systems
near the glass transition demonstrates a strong analogy between the behaviour
of granular matter and these systems. More specifically, we study in detail the
cage dynamics responsible for the subdiffusion in the slow relaxation regime,
and obtain the values of relevant time and length scales.Comment: 4 pages, 6 figures, submitted to PR
- …