966 research outputs found

    Car-oriented mean-field theory for traffic flow models

    Full text link
    We present a new analytical description of the cellular automaton model for single-lane traffic. In contrast to previous approaches we do not use the occupation number of sites as dynamical variable but rather the distance between consecutive cars. Therefore certain longer-ranged correlations are taken into account and even a mean-field approach yields non-trivial results. In fact for the model with vmax=1v_{max}=1 the exact solution is reproduced. For vmax=2v_{max}=2 the fundamental diagram shows a good agreement with results from simulations.Comment: LaTex, 10 pages, 2 postscript figure

    Hysteresis phenomenon in deterministic traffic flows

    Full text link
    We study phase transitions of a system of particles on the one-dimensional integer lattice moving with constant acceleration, with a collision law respecting slower particles. This simple deterministic ``particle-hopping'' traffic flow model being a straightforward generalization to the well known Nagel-Schreckenberg model covers also a more recent slow-to-start model as a special case. The model has two distinct ergodic (unmixed) phases with two critical values. When traffic density is below the lowest critical value, the steady state of the model corresponds to the ``free-flowing'' (or ``gaseous'') phase. When the density exceeds the second critical value the model produces large, persistent, well-defined traffic jams, which correspond to the ``jammed'' (or ``liquid'') phase. Between the two critical values each of these phases may take place, which can be interpreted as an ``overcooled gas'' phase when a small perturbation can change drastically gas into liquid. Mathematical analysis is accomplished in part by the exact derivation of the life-time of individual traffic jams for a given configuration of particles.Comment: 22 pages, 6 figures, corrected and improved version, to appear in the Journal of Statistical Physic

    Affective Experience, Desire, and Reasons for Action

    Get PDF
    What is the role of affective experience in explaining how our desires provide us with reasons for action? When we desire that p, we are thereby disposed to feel attracted to the prospect that p, or to feel averse to the prospect that not-p. In this paper, we argue that affective experiences – including feelings of attraction and aversion – provide us with reasons for action in virtue of their phenomenal character. Moreover, we argue that desires provide us with reasons for action only insofar as they are dispositions to have affective experiences. On this account, affective experience has a central role to play in explaining how desires provide reasons for action

    A Model for the Propagation of Sound in Granular Materials

    Full text link
    This paper presents a simple ball-and-spring model for the propagation of small amplitude vibrations in a granular material. In this model, the positional disorder in the sample is ignored and the particles are placed on the vertices of a square lattice. The inter-particle forces are modeled as linear springs, with the only disorder in the system coming from a random distribution of spring constants. Despite its apparent simplicity, this model is able to reproduce the complex frequency response seen in measurements of sound propagation in a granular system. In order to understand this behavior, the role of the resonance modes of the system is investigated. Finally, this simple model is generalized to include relaxation behavior in the force network -- a behavior which is also seen in real granular materials. This model gives quantitative agreement with experimental observations of relaxation.Comment: 21 pages, requires Harvard macros (9/91), 12 postscript figures not included, HLRZ preprint 6/93, (replacement has proper references included

    Cellular Automata Simulating Experimental Properties of Traffic Flows

    Full text link
    A model for 1D traffic flow is developed, which is discrete in space and time. Like the cellular automaton model by Nagel and Schreckenberg [J. Phys. I France 2, 2221 (1992)], it is simple, fast, and can describe stop-and-go traffic. Due to its relation to the optimal velocity model by Bando et al. [Phys. Rev. E 51, 1035 (1995)], its instability mechanism is of deterministic nature. The model can be easily calibrated to empirical data and displays the experimental features of traffic data recently reported by Kerner and Rehborn [Phys. Rev. E 53, R1297 (1996)].Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://traffic.comphys.uni-duisburg.de/member/home_schreck.htm

    Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ износостойкого покрытия с использованиСм Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ элСктронного Π»ΡƒΡ‡Π°

    Get PDF
    Π’ настоящСй Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования влияния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠΉ элСктронной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΎΡ‚ΠΆΠΈΠ³Π° Π½Π° структуру ΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡΡ‚ΡŒ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ ΠΈΠ· Ρ…Ρ€ΠΎΠΌΠΎ-Π²Π°Π½Π°Π΄ΠΈΠ΅Π²ΠΎΠ³ΠΎ Ρ‡ΡƒΠ³ΡƒΠ½Π°. ΠŸΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΡ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктронно-Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Π½Π°ΠΏΠ»Π°Π²ΠΊΠΈ Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅ ΠΈΠ· малоуглСродистой стали. ПослС ΡˆΠ»ΠΈΡ„ΠΎΠ²Π°Π½ΠΈΡ повСрхности ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ Π±Ρ‹Π»ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ Π»ΠΎΠΊΠ°Π»ΡŒΠ½ΠΎΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹ΠΌ сфокусированным Π² Ρ‚ΠΎΡ‡ΠΊΡƒ элСктронным ΠΏΡƒΡ‡ΠΊΠΎΠΌ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π·ΠΎΠ½Ρ‹ состоят ΠΈΠ· Π΄Π²ΡƒΡ… Ρ„Π°Π·. ΠŸΠ΅Ρ€Π²Π°Ρ Ρ„Π°Π·Π° - пСрСсыщСнный аустСнит. Вторая локально распрСдСлСнныС Π² объСмС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ Π·Π°Ρ€ΠΎΠ΄Ρ‹ΡˆΠΈ эвтСктики. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ систСмой NanoTest ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π·ΠΎΠ½Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ Π½ΠΈΠ·ΠΊΠΈΠ΅ значСния твСрдости. НизкиС значСния твСрдости, вСроятно, обусловлСно Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ объСма пСрСсыщСнного аустСнита Π² ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π·ΠΎΠ½Π΅. ΠžΡ‚ΠΆΠΈΠ³ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ твСрдости ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π·ΠΎΠ½. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΎΡ‚ΠΆΠΈΠ³Π° (500Β°Π‘ ) пСрСсыщСнный аустСнит распадаСтся. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΎΡ‚ΠΆΠΈΠ³Π° Π΄ΠΎ 1100Β°Π‘ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ росту ΠΈ коагуляции ΠΊΠ°Ρ€Π±ΠΈΠ΄Π½ΠΎΠΉ Ρ„Π°Π·Ρ‹ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π·ΠΎΠ½
    • …
    corecore