1,141 research outputs found
SUSTAINABLE AVIATION FOR SWEDEN - TECHNOLOGY & CAPABILITY ASSESSMENT TARGETING 2045
The goal of this project is to analyse the possibilities offered by different technological solutions to achieve zero emission aviation, firstly in the Swedish/Nordic network context and secondly extend this to the European context. This project will investigate the potential and feasibility of new or upgraded aircraft types based on the different technologies mapped from both, various published roadmaps and national expertise from Swedish aerospace universities and companies. This involves developing aircraft conceptual designs studies and trade analysis with regards to different fuel types, propulsion technologies, structure, operations, network and fleet management, and all relevant technologies. The project will, on a common technology basis, analyse a range of zero carbon fuels and associated technologies through operational studies and optimization to accelerate the introduction of fossil free aircraft technology and choosing optimal paths for making aviation sustainable
Annotation of protein residues based on a literature analysis: cross-validation against UniProtKb
<p>Abstract</p> <p>Background</p> <p>A protein annotation database, such as the Universal Protein Resource knowledge base (UniProtKb), is a valuable resource for the validation and interpretation of predicted 3D structure patterns in proteins. Existing studies have focussed on point mutation extraction methods from biomedical literature which can be used to support the time consuming work of manual database curation. However, these methods were limited to point mutation extraction and do not extract features for the annotation of proteins at the residue level.</p> <p>Results</p> <p>This work introduces a system that identifies protein residues in MEDLINE abstracts and annotates them with features extracted from the context written in the surrounding text. MEDLINE abstract texts have been processed to identify protein mentions in combination with taxonomic species and protein residues (F1-measure 0.52). The identified protein-species-residue triplets have been validated and benchmarked against reference data resources (UniProtKb, average F1-measure of 0.54). Then, contextual features were extracted through shallow and deep parsing and the features have been classified into predefined categories (F1-measure ranges from 0.15 to 0.67). Furthermore, the feature sets have been aligned with annotation types in UniProtKb to assess the relevance of the annotations for ongoing curation projects. Altogether, the annotations have been assessed automatically and manually against reference data resources.</p> <p>Conclusion</p> <p>This work proposes a solution for the automatic extraction of functional annotation for protein residues from biomedical articles. The presented approach is an extension to other existing systems in that a wider range of residue entities are considered and that features of residues are extracted as annotations.</p
The possibility of evidence-based psychiatry: depression as a case
Considering psychiatry as a medical discipline, a diagnosis identifying a disorder should lead to an effective therapy. Such presumed causality is the basis of evidence-based psychiatry. We examined the strengths and weaknesses of research onto the causality of relationship between diagnosis and therapy of major depressive disorder and suggest what could be done to strengthen eventual claims on causality. Four obstacles for a rational evidence-based psychiatry were recognised. First, current classification systems are scientifically nonfalsifiable. Second, cerebral processes are—at least to some extent—nondeterministic, i.e. they are random, stochastic and/or chaotic. Third, the vague or lack of relationship between therapeutic regimens and suspected pathogenesis. Fourth, the inadequacy of tools to diagnose and delineate a functional disorder. We suggest a strategy to identify diagnostic prototypes that are characterised by a limited number of parameters (symptoms, markers and other characteristics). A prototypical diagnosis that may either support or reject particular elements of current diagnostic systems. Nevertheless, one faces the possibility that psychiatry will remain a relatively weak evidence-based medical discipline
Text Mining Improves Prediction of Protein Functional Sites
We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions
The additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress cardiac MRI for the detection of myocardial ischemia
Purpose of this study was to assess the additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress Cardiac-MR (CMR). Dobutamine Stress CMR was performed in 115 patients with an inconclusive diagnosis of myocardial ischemia on a 1.5 T system (Magnetom Avanto, Siemens Medical Systems). Three short-axis cine and grid series were acquired during rest and at increasing doses of dobutamine (maximum 40 μg/kg/min). On peak dose dobutamine followed immediately by a first pass myocardial perfusion imaging sequence. Images were graded according to the sixteen-segment model, on a four point scale. Ninety-seven patients showed no New (Induced) Wall Motion Abnormalities (NWMA). Perfusion imaging showed absence of perfusion deficits in 67 of these patients (69%). Perfusion deficits attributable to known previous myocardial infarction were found in 30 patients (31%). Eighteen patients had NWMA, indicative for myocardial ischemia, of which 14 (78%) could be confirmed by a corresponding perfusion deficit. Four patients (22%) with NWMA did not have perfusion deficits. In these four patients NWMA were caused by a Left Bundle Branch Block (LBBB). They were free from cardiac events during the follow-up period (median 13.5 months; range 6–20). Addition of first-pass myocardial perfusion imaging during peak-dose dobutamine stress CMR can help to decide whether a NWMA is caused by myocardial ischemia or is due to an (inducible) LBBB, hereby preventing a false positive wall motion interpretation
Neural Processing of Short-Term Recurrence in Songbird Vocal Communication
BACKGROUND: Many situations involving animal communication are dominated by recurring, stereotyped signals. How do receivers optimally distinguish between frequently recurring signals and novel ones? Cortical auditory systems are known to be pre-attentively sensitive to short-term delivery statistics of artificial stimuli, but it is unknown if this phenomenon extends to the level of behaviorally relevant delivery patterns, such as those used during communication. METHODOLOGY/PRINCIPAL FINDINGS: We recorded and analyzed complete auditory scenes of spontaneously communicating zebra finch (Taeniopygia guttata) pairs over a week-long period, and show that they can produce tens of thousands of short-range contact calls per day. Individual calls recur at time scales (median interval 1.5 s) matching those at which mammalian sensory systems are sensitive to recent stimulus history. Next, we presented to anesthetized birds sequences of frequently recurring calls interspersed with rare ones, and recorded, in parallel, action and local field potential responses in the medio-caudal auditory forebrain at 32 unique sites. Variation in call recurrence rate over natural ranges leads to widespread and significant modulation in strength of neural responses. Such modulation is highly call-specific in secondary auditory areas, but not in the main thalamo-recipient, primary auditory area. CONCLUSIONS/SIGNIFICANCE: Our results support the hypothesis that pre-attentive neural sensitivity to short-term stimulus recurrence is involved in the analysis of auditory scenes at the level of delivery patterns of meaningful sounds. This may enable birds to efficiently and automatically distinguish frequently recurring vocalizations from other events in their auditory scene
Exon expression arrays as a tool to identify new cancer genes
Background: Identification of genes that are causally implicated in oncogenesis is a major goal in cancer research. An estimated 10-20% of cancer-related gene mutations result in skipping of one or more exons in the encoded transcripts. Here we report on a strategy to screen in a global fashion for such exon-skipping events using PAttern based Correlation (PAC). The PAC algorithm has been used previously to identify differentially expressed splice variants between two predefined subgroups. As genetic changes in cancer are sample specific, we tested the ability of PAC to identify aberrantly expressed exons in single samples. Principal Findings: As a proof-of-principle, we tested the PAC strategy on human cancer samples of which the complete coding sequence of eight cancer genes had been screened for mutations. PAC detected all seven exon-skipping mutants among 12 cancer cell lines. PAC also identified exon-skipping mutants in clinical cancer specimens although detection was compromised due to heterogeneous (wild-type) transcript expression. PAC reduced the number candidate genes/exons for subsequent mutational analysis by two to three orders of magnitude and had a substantial true positive rate. Importantly, of 112 randomly selected outlier exons, sequence analysis identified two novel exon skipping events, two novel base changes and 21 previously reported base changes (SNPs). Conclusions: The ability of PAC to enrich for mutated transcripts and to identify known and novel genetic changes confirms its suitability as a strategy to identify candidate cancer genes
Effects of abstinence on brain morphology in alcoholism: A MRI study
Chronic alcohol abuse leads to morphological changes of the brain. We investigated if these volumetric changes are reversible after a period of abstinence. For this reason 41 male and 15 female alcohol patients underwent MRI-scanning after in-patient detoxification (baseline) entering alcoholism treatment programs, and between 6 and 9 months later (follow-up), in a phase of convalescence. Additionally, 29 male and 16 female control subjects were examined. The MRI-scans were delineated and the resulting regions of interest, volumes of lateral ventricles and prefrontal lobes were expressed relatively to total brain volume. Compared to control subjects alcohol patients showed bilaterally decreased prefrontal lobes (11% reduction) and increased lateral ventricles (up to 42% enlargement). The extent of the ventricular increase was depending on patient’s additional psychiatric diagnosis, showing smaller lateral ventricles in patients with additional personality disorder. While at follow-up the size of prefrontal lobes remained unchanged, volumes of the lateral ventricles decreased (5–6% reduction) in alcohol patients with abstinence and improved drinking behavior, especially in patients that underwent only one detoxification. The extent of the ventricular enlargement correlated with the elevation of alcohol related laboratory measures (mean corpuscular volume, gamma-glutamyl transpeptidase). In conclusion this study confirms the hypothesis that alcoholism causes brain damages that are partially reversible. It should be analyzed in further studies with larger sample sizes, if complete brain regeneration is possible maintaining abstinence over a longer period
- …