4 research outputs found

    In Vitro and In Silico Antioxidant Efficiency of Bio-Potent Secondary Metabolites From Different Taxa of Black Seed-Producing Plants and Their Derived Mycoendophytes

    Get PDF
    Oxidative stress is involved in the pathophysiology of multiple health complications, and it has become a major focus in targeted research fields. As known, black seeds are rich sources of bio-active compounds and widely used to promote human health due to their excellent medicinal and pharmaceutical properties. The present study investigated the antioxidant potency of various black seeds from plants and their derived mycoendophytes, and determined the total phenolic and flavonoid contents in different extracts, followed by characterization of major constituents by HPLC analysis. Finally, in silico docking determined their binding affinities to target myeloperoxidase enzymes. Ten dominant mycoendophytes were isolated from different black seed plants. Three isolates were then selected based on high antiradical potency and further identified by ITS ribosomal gene sequencing. Those isolated were Aspergillus niger TU 62, Chaetomium madrasense AUMC14830, and Rhizopus oryzae AUMC14823. Nigella sativa seeds and their corresponding endophyte A. niger had the highest content of phenolics in their n-butanol extracts (28.50 and 24.43 mg/g), flavonoids (15.02 and 11.45 mg/g), and antioxidant activities (90.48 and 81.48%), respectively, followed by Dodonaea viscosa and Portulaca oleracea along with their mycoendophytic R. oryzae and C. madrasense. Significant positive correlations were found between total phenolics, flavonoids, and the antioxidant activities of different tested extracts. The n-butanol extracts of both black seeds and their derived mycoendophytes showed reasonable IC50 values (0.81–1.44 mg/ml) compared to the control with significant correlations among their phytochemical contents. Overall, seventeen standard phenolics and flavonoids were used, and the compounds were detected in different degrees of existence and concentration in the examined extracts through HPLC analysis. Moreover, the investigation of the molecular simulation results of detected compounds against the myeloperoxidase enzyme revealed that, as a targeted antioxidant, rutin possessed a high affinity (−15.3184 kcal/mol) as an inhibitor. Taken together, the black seeds and their derived mycoendophytes are promising bio-prospects for the broad industrial sector of antioxidants with several valuable potential pharmaceutical and nutritional applications

    Response-Surface Statistical Optimization of Submerged Fermentation for Pectinase and Cellulase Production by <i>Mucor</i> <i>circinelloides</i> and <i>M. hiemalis</i>

    No full text
    Cellulase and pectinase are degrading cellulosic and pectic substances that form plant cell walls and, thereby, they have a wide range of applications in the agro-industrial by-products recycling and food industries. In the current research, Mucor circinelloides and M. hiemalis strains were tested for their ability to produce cellulase and pectinase from tangerine peel by submerged fermentation. Experiments on five variables: temperature, pH, incubation period, inoculum size, and substrate concentration, were designed with a Box–Behnken design, as well as response surface methodology (RSM), and analysis of variance was performed. In addition, cellulase and pectinase were partially purified and characterized. At their optimum parameters, M. circinelloides and M. hiemalis afforded high cellulase production (37.20 U/mL and 33.82 U/mL, respectively) and pectinase (38.02 U/mL and 39.76 U/mL, respectively). The partial purification of M. circinelloides and M. hiemalis cellulase produced 1.73- and 2.03-fold purification with 31.12 and 32.02% recovery, respectively; meanwhile, 1.74- and 1.99-fold purification with 31.26 and 31.51% recovery, respectively, were obtained for pectinase. Partially purified cellulase and pectinase from M. circinelloides and M. hiemalis demonstrated the highest activity at neutral pH, and 70 and 50 °C, for cellulase and 50 and 60 °C, for pectinase, respectively. Moreover, 10 mM of K+ increased M. circinelloides enzymatic activity. The production of cellulase and pectinase from M. circinelloides and M. hiemalis utilizing RSM is deemed profitable for the decomposition of agro-industrial wastes

    Response-Surface Statistical Optimization of Submerged Fermentation for Pectinase and Cellulase Production by Mucor&nbsp;circinelloides and M. hiemalis

    No full text
    Cellulase and pectinase are degrading cellulosic and pectic substances that form plant cell walls and, thereby, they have a wide range of applications in the agro-industrial by-products recycling and food industries. In the current research, Mucor&nbsp;circinelloides and M. hiemalis strains were tested for their ability to produce cellulase and pectinase from tangerine peel by submerged fermentation. Experiments on five variables: temperature, pH, incubation period, inoculum size, and substrate concentration, were designed with a Box&ndash;Behnken design, as well as response surface methodology (RSM), and analysis of variance was performed. In addition, cellulase and pectinase were partially purified and characterized. At their optimum parameters, M. circinelloides and M. hiemalis afforded high cellulase production (37.20 U/mL and 33.82 U/mL, respectively) and pectinase (38.02 U/mL and 39.76 U/mL, respectively). The partial purification of M. circinelloides and M. hiemalis cellulase produced 1.73- and 2.03-fold purification with 31.12 and 32.02% recovery, respectively; meanwhile, 1.74- and 1.99-fold purification with 31.26 and 31.51% recovery, respectively, were obtained for pectinase. Partially purified cellulase and pectinase from M. circinelloides and M. hiemalis demonstrated the highest activity at neutral pH, and 70 and 50 &deg;C, for cellulase and 50 and 60 &deg;C, for pectinase, respectively. Moreover, 10 mM of K+ increased M. circinelloides enzymatic activity. The production of cellulase and pectinase from M. circinelloides and M. hiemalis utilizing RSM is deemed profitable for the decomposition of agro-industrial wastes

    Cytotoxic Potential of Alternaria tenuissima AUMC14342 Mycoendophyte Extract: A Study Combined with LC-MS/MS Metabolic Profiling and Molecular Docking Simulation

    No full text
    Breast, cervical, and ovarian cancers are among the most serious cancers and the main causes of mortality in females worldwide, necessitating urgent efforts to find newer sources of safe anticancer drugs. The present study aimed to evaluate the anticancer potency of mycoendophytic Alternaria tenuissima AUMC14342 ethyl acetate extract on HeLa (cervical cancer), SKOV-3 (ovarian cancer), and MCF-7 (breast adenocarcinoma) cell lines. The extract showed potent effect on MCF-7 cells with an IC50 value of 55.53 &mu;g/mL. Cell cycle distribution analysis of treated MCF-7 cells revealed a cell cycle arrest at the S phase with a significant increase in the cell population (25.53%). When compared to control cells, no significant signs of necrotic or apoptotic cell death were observed. LC-MS/MS analysis of Alternaria tenuissima extract afforded the identification of 20 secondary metabolites, including 7-dehydrobrefeldin A, which exhibited the highest interaction score (&minus;8.0156 kcal/mol) in molecular docking analysis against human aromatase. Regarding ADME pharmacokinetics and drug-likeness properties, 7-dehydrobrefeldin A, 4&rsquo;-epialtenuene, and atransfusarin had good GIT absorption and water solubility without any violation of drug-likeness rules. These findings support the anticancer activity of bioactive metabolites derived from endophytic fungi and provide drug scaffolds and substitute sources for the future development of safe chemotherapy
    corecore