677 research outputs found

    Upper Bounds for the Critical Car Densities in Traffic Flow Problems

    Full text link
    In most models of traffic flow, the car density pp is the only free parameter in determining the average car velocity v\langle v \rangle. The critical car density pcp_c, which is defined to be the car density separating the jamming phase (with v=0\langle v \rangle = 0) and the moving phase (with v>0\langle v \rangle > 0), is an important physical quantity to investigate. By means of simple statistical argument, we show that pc<1p_c < 1 for the Biham-Middleton-Levine model of traffic flow in two or higher spatial dimensions. In particular, we show that pc11/12p_{c} \leq 11/12 in 2 dimension and pc1(D12D)Dp_{c} \leq 1 - \left( \frac{D-1}{2D} \right)^D in DD (D>2D > 2) dimensions.Comment: REVTEX 3.0, 5 pages with 1 figure appended at the back, Minor revision, to be published in the Sept issue of J.Phys.Soc.Japa

    Towards a variational principle for motivated vehicle motion

    Full text link
    We deal with the problem of deriving the microscopic equations governing the individual car motion based on the assumptions about the strategy of driver behavior. We suppose the driver behavior to be a result of a certain compromise between the will to move at a speed that is comfortable for him under the surrounding external conditions, comprising the physical state of the road, the weather conditions, etc., and the necessity to keep a safe headway distance between the cars in front of him. Such a strategy implies that a driver can compare the possible ways of his further motion and so choose the best one. To describe the driver preferences we introduce the priority functional whose extremals specify the driver choice. For simplicity we consider a single-lane road. In this case solving the corresponding equations for the extremals we find the relationship between the current acceleration, velocity and position of the car. As a special case we get a certain generalization of the optimal velocity model similar to the "intelligent driver model" proposed by Treiber and Helbing.Comment: 6 pages, RevTeX

    Anisotropic effect on two-dimensional cellular automaton traffic flow with periodic and open boundaries

    Full text link
    By the use of computer simulations we investigate, in the cellular automaton of two-dimensional traffic flow, the anisotropic effect of the probabilities of the change of the move directions of cars, from up to right (purp_{ur}) and from right to up (prup_{ru}), on the dynamical jamming transition and velocities under the periodic boundary conditions in one hand and the phase diagram under the open boundary conditions in the other hand. However, in the former case, the first order jamming transition disappears when the cars alter their directions of move (pur0p_{ur}\neq 0 and/or pru0p_{ru}\neq 0). In the open boundary conditions, it is found that the first order line transition between jamming and moving phases is curved. Hence, by increasing the anisotropy, the moving phase region expand as well as the contraction of the jamming phase one. Moreover, in the isotropic case, and when each car changes its direction of move every time steps (pru=pur=1p_{ru}=p_{ur}=1), the transition from the jamming phase (or moving phase) to the maximal current one is of first order. Furthermore, the density profile decays, in the maximal current phase, with an exponent γ1/4\gamma \approx {1/4}.}Comment: 13 pages, 22 figure

    Analytical Results For The Steady State Of Traffic Flow Models With Stochastic Delay

    Full text link
    Exact mean field equations are derived analytically to give the fundamental diagrams, i.e., the average speed - car density relations, for the Fukui-Ishibashi one-dimensional traffic flow cellular automaton model of high speed vehicles (vmax=M>1)(v_{max}=M>1) with stochastic delay. Starting with the basic equation describing the time evolution of the number of empty sites in front of each car, the concepts of inter-car spacings longer and shorter than MM are introduced. The probabilities of having long and short spacings on the road are calculated. For high car densities (ρ1/M)(\rho \geq 1/M), it is shown that inter-car spacings longer than MM will be shortened as the traffic flow evolves in time, and any initial configurations approach a steady state in which all the inter-car spacings are of the short type. Similarly for low car densities (ρ1/M)(\rho \leq 1/M), it can be shown that traffic flow approaches an asymptotic steady state in which all the inter-car spacings are longer than M2M-2. The average traffic speed is then obtained analytically as a function of car density in the asymptotic steady state. The fundamental diagram so obtained is in excellent agreement with simulation data.Comment: 12 pages, latex, 2 figure

    The Effect Of Delay Times On The Optimal Velocity Traffic Flow Behavior

    Full text link
    We have numerically investigated the effect of the delay times τf\tau_f and τs\tau_s of a mixture of fast and slow vehicles on the fundamental diagram of the optimal velocity model. The optimal velocity function of the fast cars depends not only on the headway of each car but also on the headway of the immediately preceding one. It is found that the small delay times have almost no effects, while, for sufficiently large delay time τs\tau_s the current profile displays qualitatively five different forms depending on τf\tau_f, τs\tau_s and the fractions dfd_f and dsd_s of the fast and slow cars respectively. The velocity (current) exhibits first order transitions at low and/or high densities, from freely moving phase to the congested state, and from congested state to the jamming one respectively accompanied by the existence of a local minimal current. Furthermore, there exist a critical value of τf\tau_f above which the metastability and hysteresis appear. The spatial-temporal traffic patterns present more complex structur

    Optimizing Traffic Lights in a Cellular Automaton Model for City Traffic

    Full text link
    We study the impact of global traffic light control strategies in a recently proposed cellular automaton model for vehicular traffic in city networks. The model combines basic ideas of the Biham-Middleton-Levine model for city traffic and the Nagel-Schreckenberg model for highway traffic. The city network has a simple square lattice geometry. All streets and intersections are treated equally, i.e., there are no dominant streets. Starting from a simple synchronized strategy we show that the capacity of the network strongly depends on the cycle times of the traffic lights. Moreover we point out that the optimal time periods are determined by the geometric characteristics of the network, i.e., the distance between the intersections. In the case of synchronized traffic lights the derivation of the optimal cycle times in the network can be reduced to a simpler problem, the flow optimization of a single street with one traffic light operating as a bottleneck. In order to obtain an enhanced throughput in the model improved global strategies are tested, e.g., green wave and random switching strategies, which lead to surprising results.Comment: 13 pages, 10 figure

    A Cellular Automaton Model for Bi-Directionnal Traffic

    Full text link
    We investigate a cellular automaton (CA) model of traffic on a bi-directional two-lane road. Our model is an extension of the one-lane CA model of {Nagel and Schreckenberg 1992}, modified to account for interactions mediated by passing, and for a distribution of vehicle speeds. We chose values for the various parameters to approximate the behavior of real traffic. The density-flow diagram for the bi-directional model is compared to that of a one-lane model, showing the interaction of the two lanes. Results were also compared to experimental data, showing close agreement. This model helps bridge the gap between simplified cellular automata models and the complexity of real-world traffic.Comment: 4 pages 6 figures. Accepted Phys Rev

    A realistic two-lane traffic model for highway traffic

    Full text link
    A two-lane extension of a recently proposed cellular automaton model for traffic flow is discussed. The analysis focuses on the reproduction of the lane usage inversion and the density dependence of the number of lane changes. It is shown that the single-lane dynamics can be extended to the two-lane case without changing the basic properties of the model which are known to be in good agreement with empirical single-vehicle data. Therefore it is possible to reproduce various empirically observed two-lane phenomena, like the synchronization of the lanes, without fine-tuning of the model parameters

    Traffic Network Optimum Principle - Minimum Probability of Congestion Occurrence

    Full text link
    We introduce an optimum principle for a vehicular traffic network with road bottlenecks. This network breakdown minimization (BM) principle states that the network optimum is reached, when link flow rates are assigned in the network in such a way that the probability for spontaneous occurrence of traffic breakdown at one of the network bottlenecks during a given observation time reaches the minimum possible value. Based on numerical simulations with a stochastic three-phase traffic flow model, we show that in comparison to the well-known Wardrop's principles the application of the BM principle permits considerably greater network inflow rates at which no traffic breakdown occurs and, therefore, free flow remains in the whole network.Comment: 22 pages, 6 figure

    Diffusion limited aggregation as a Markovian process. Part I: bond-sticking conditions

    Full text link
    Cylindrical lattice Diffusion Limited Aggregation (DLA), with a narrow width N, is solved using a Markovian matrix method. This matrix contains the probabilities that the front moves from one configuration to another at each growth step, calculated exactly by solving the Laplace equation and using the proper normalization. The method is applied for a series of approximations, which include only a finite number of rows near the front. The matrix is then used to find the weights of the steady state growing configurations and the rate of approaching this steady state stage. The former are then used to find the average upward growth probability, the average steady-state density and the fractal dimensionality of the aggregate, which is extrapolated to a value near 1.64.Comment: 24 pages, 20 figure
    corecore