60 research outputs found

    Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus

    Get PDF
    Heterocapsa circularisquama DNA virus (HcDNAV; previously designated as HcV) is a giant virus (girus) with a ~356-kbp double-stranded DNA (dsDNA) genome. HcDNAV lytically infects the bivalve-killing marine dinoflagellate H. circularisquama, and currently represents the sole DNA virus isolated from dinoflagellates, one of the most abundant protists in marine ecosystems. Its morphological features, genome type, and host range previously suggested that HcDNAV might be a member of the family Phycodnaviridae of Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs), though no supporting sequence data was available. NCLDVs currently include two families found in aquatic environments (Phycodnaviridae, Mimiviridae), one mostly infecting terrestrial animals (Poxviridae), another isolated from fish, amphibians and insects (Iridoviridae), and the last one (Asfarviridae) exclusively represented by the animal pathogen African swine fever virus (ASFV), the agent of a fatal hemorrhagic disease in domestic swine. In this study, we determined the complete sequence of the type B DNA polymerase (PolB) gene of HcDNAV. The viral PolB was transcribed at least from 6 h post inoculation (hpi), suggesting its crucial function for viral replication. Most unexpectedly, the HcDNAV PolB sequence was found to be closely related to the PolB sequence of ASFV. In addition, the amino acid sequence of HcDNAV PolB showed a rare amino acid substitution within a motif containing highly conserved motif: YSDTDS was found in HcDNAV PolB instead of YGDTDS in most dsDNA viruses. Together with the previous observation of ASFV-like sequences in the Sorcerer II Global Ocean Sampling metagenomic datasets, our results further reinforce the ideas that the terrestrial ASFV has its evolutionary origin in marine environments

    Visualization of a Dinoflagellate-Infecting Virus HcDNAV and Its Infection Process

    No full text
    HcDNAV (a type species of Genus Dinodnavirus) is a large double-stranded DNA virus, which lytically infects the bloom-forming marine microalga Heterocapsa circularisquama Horiguchi (Dinophyceae). In the present study, detailed observation of the HcDNAV particle and its infection process was conducted via field emission scanning electron microscopy (FE-SEM) and epifluorescence microscopy (EFM). Each five-fold vertex of the icosahedral virion was decorated with a protrusion, which may be related to the entry process of HcDNAV into the host. The transverse groove of host cells is proposed to be the main virus entry site. A visible DAPI-stained region, which is considered to be the viroplasm (virus factory), appeared in close proximity to the host nucleus at 11 h post infection (hpi); the putative viral DAPI signal was remarkably enlarged at 11–30 hpi. It was kidney-shaped at 13–15 hpi, horseshoe-shaped at 20 hpi, doughnut-shaped at 30 hpi, and changed into a three-dimensionally complicated shape at 51–53 hpi, by which time most parts of the host cell were occupied by the putative viral DAPI signal. While the virions were within the viroplasm, they were easily distinguishable by their vertex protrusions by FE-SEM

    The functional effect of Gly209 and Ile213 substitutions on lysozyme activity of family 19 chitinase encoded by cyanophage Ma-LMM01

    Get PDF
    ORF69 in the cyanophage infecting Microcystis aeruginosa, Ma-LMM01, shows homology to the family 19 chitinases where the catalytic domain has structural similarity to lysozyme. Chitinases hydrolyze chitin, a β-1, 4-linked monopolymer of N-acetylglucosamine (GlcNAc); whereas lysozymes hydrolyzes peptidoglycan, alternating β-1, 4-linked copolymers of N-acetylmuramic acid (MurNAc) and GlcNAc. Using amino acid sequence comparison to ORF69, the putative sugar binding residues, Gln162 and Lys165, from the barley chitinase (the model enzyme for the family 19 chitinases) corresponding to subsites −4 and −3 were found to be replaced with Gly209 and Ile213, respectively, in ORF69. To analyze their contribution to substrate binding affinity, ORF69 was cloned into Escherichia coli; and two mutant proteins G209Q and I213K were prepared using site-directed mutagenesis. The wild-type gene product (gp69) showed both lysozyme and chitinase activities. In contrast, the I213K mutant showed a decrease (70%) in lysozyme activity and a significant increase (50%) in chitinase activity; whereas, the G209Q mutant almost completely abolished both enzyme activities. The data suggest the Ile213 residue is involved in recognizing the substrate MurNAc; and Gly209 has significant contribution in chitinase and lysozyme activities for the wild-type gp69

    Cyanophage Infection in the Bloom-Forming Cyanobacteria Microcystis aeruginosa in Surface Freshwater

    Get PDF
    Host-like genes are often found in viral genomes. To date, multiple host-like genes involved in photosynthesis and the pentose phosphate pathway have been found in phages of marine cyanobacteria Synechococcus and Prochlorococcus. These gene products are predicted to redirect host metabolism to deoxynucleotide biosynthesis for phage replication while maintaining photosynthesis. A cyanophage, Ma-LMM01, infecting the toxic cyanobacterium Microcystis aeruginosa, was isolated from a eutrophic freshwater lake and assigned as a member of a new lineage of the Myoviridae family. The genome encodes a host-like NblA. Cyanobacterial NblA is known to be involved in the degradation of the major light harvesting complex, the phycobilisomes. Ma-LMM01 nblA gene showed an early expression pattern and was highly transcribed during phage infection. We speculate that the co-option of nblA into Microcystis phages provides a significant fitness advantage to phages by preventing photoinhibition during infection and possibly represents an important part of the co-evolutionary interactions between cyanobacteria and their phages
    corecore