16 research outputs found
Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel
Purpose: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants.
Methods: The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Functional, computational, allelic, and segregation data were also obtained. Case-control statistical analyses were performed.
Results: The panel reviewed the synthesized information, and classified the p.Met34Thr and p.Val37Ile variants utilizing professional variant interpretation guidelines and professional judgment. We found that p.Met34Thr and p.Val37Ile are significantly overrepresented in hearing loss patients, compared with population controls. Individuals homozygous or compound heterozygous for p.Met34Thr or p.Val37Ile typically manifest mild to moderate hearing loss. Several other types of evidence also support pathogenic roles for these two variants.
Conclusion: Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in GJB2 are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance
Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72 400 specimens
Spinal muscular atrophy (SMA) is a leading inherited cause of infant death with a reported incidence of ∼1 in 10 000 live births and is second to cystic fibrosis as a common, life-shortening autosomal recessive disorder. The American College of Medical Genetics has recommended population carrier screening for SMA, regardless of race or ethnicity, to facilitate informed reproductive options, although other organizations have cited the need for additional large-scale studies before widespread implementation. We report our data from carrier testing (n=72 453) and prenatal diagnosis (n=121) for this condition. Our analysis of large-scale population carrier screening data (n=68 471) demonstrates the technical feasibility of high throughput testing and provides mutation carrier and allele frequencies at a level of accuracy afforded by large data sets. In our United States pan-ethnic population, the calculated a priori carrier frequency of SMA is 1/54 with a detection rate of 91.2%, and the pan-ethnic disease incidence is calculated to be 1/11 000. Carrier frequency and detection rates provided for six major ethnic groups in the United States range from 1/47 and 94.8% in the Caucasian population to 1/72 and 70.5% in the African American population, respectively. This collective experience can be utilized to facilitate accurate pre- and post-test counseling in the settings of carrier screening and prenatal diagnosis for SMA
Laboratory Guidelines for Detection, Interpretation, and Reporting of Maternal Cell Contamination in Prenatal Analyses: A Report of the Association for Molecular Pathology
This document summarizes laboratory guidelines for the detection, interpretation, and reporting of maternal cell contamination in prenatal analyses
Population Carrier Screening for Spinal Muscular Atrophy: A Position Statement of the Association for Molecular Pathology
Spinal muscular atrophy is a common and often fatal autosomal recessive disorder for which carrier screening is available. The Association for Molecular Pathology has evaluated recent opinions regarding population carrier screening, reviewed the current literature, and developed a position statement that includes specific recommendations addressing both diagnostic and practical issues that affect implementation
Evaluation of a 27-gene inherited cancer panel across 630 consecutive patients referred for testing in a clinical diagnostic laboratory
Abstract Background Extensive clinical and genetic heterogeneity of inherited cancers has allowed multi-gene panel testing to become an efficient means for identification of patients with an inherited predisposition to a broad spectrum of syndromic and nonsyndromic forms of cancer. This study reports our experience with a 27-gene inherited cancer panel on a cohort of 630 consecutive individuals referred for testing at our laboratory with the following objectives: 1. Determine the rates for positive cases and those with variants of uncertain clinical significance (VUS) relative to data published in the recent literature, 2. Examine heterogeneity among the constituent genes on the panel, and 3. Review test uptake in the cohort relative to other reports describing outcomes for expanded panel testing. Methods Clinical and genomic data were reviewed on 630 individuals tested on a panel of 27 genes selected on the basis of high (≥ 40%) or moderate to low (≤ 40%) lifetime risk of hereditary cancer. These patients were not enriched for adherence to the National Comprehensive Cancer Network (NCCN) criteria for Hereditary Breast and Ovarian Cancer (HBOC) or Lynch Syndrome (LS) and constitute a referral laboratory cohort. Results Sixty-five individuals with variants classified as pathogenic or likely pathogenic across 14 genes were identified for an overall positive rate of 10.3%. Although a family history of cancer constituted a major reason for referral, accounting for 84% of our cohort, excluding patients with a known familial variant did not have a significant impact on the observed positive rate (9% vs 10.3%). More than half (58%) of the pathogenic or likely pathogenic variants were observed in high or moderate to low risk genes on the panel, while only 42% occurred in classic HBOC or LS-associated genes. Conclusion These results provide the actual percentage of family or personal history of cancer that can be attributed to pathogenic or likely pathogenic variants in one or more of the genes on our panel and corroborate the utility of multi-gene panels over sequential testing to identify individuals with an inherited predisposition to cancer
Additional file 1: of Evaluation of a 27-gene inherited cancer panel across 630 consecutive patients referred for testing in a clinical diagnostic laboratory
Patient characteristics and variant listing among positive cases, Pathogenic and likely pathogenic variants detected in the study. (XLSX 20 kb