128 research outputs found

    2-Vertex Connectivity in Directed Graphs

    Full text link
    We complement our study of 2-connectivity in directed graphs, by considering the computation of the following 2-vertex-connectivity relations: We say that two vertices v and w are 2-vertex-connected if there are two internally vertex-disjoint paths from v to w and two internally vertex-disjoint paths from w to v. We also say that v and w are vertex-resilient if the removal of any vertex different from v and w leaves v and w in the same strongly connected component. We show how to compute the above relations in linear time so that we can report in constant time if two vertices are 2-vertex-connected or if they are vertex-resilient. We also show how to compute in linear time a sparse certificate for these relations, i.e., a subgraph of the input graph that has O(n) edges and maintains the same 2-vertex-connectivity and vertex-resilience relations as the input graph, where n is the number of vertices.Comment: arXiv admin note: substantial text overlap with arXiv:1407.304

    Totally balanced combinatorial optimization games

    Get PDF
    Combinatorial optimization games deal with cooperative games for which the value of every subset of players is obtained by solving a combinatorial optimization problem on the resources collectively owned by this subset. A solution of the game is in the core if no subset of players is able to gain advantage by breaking away from this collective decision of all players. The game is totally balanced if and only if the core is non-empty for every induced subgame of it. We study the total balancedness of several combinatorial optimization games in this paper. For a class of the partition game [5], we have a complete characterization for the total balancedness. For the packing and covering games [3], we completely clarify the relationship between the related primal/dual linear programs for the corresponding games to be totally balanced. Our work opens up the question of fully characterizing the combinatorial structures of totally balanced packing and covering games, for which we present some interesting examples: the totally balanced matching, vertex cover, and minimum coloring games.link_to_subscribed_fulltex

    An Exact Algorithm for TSP in Degree-3 Graphs via Circuit Procedure and Amortization on Connectivity Structure

    Full text link
    The paper presents an O^*(1.2312^n)-time and polynomial-space algorithm for the traveling salesman problem in an n-vertex graph with maximum degree 3. This improves the previous time bounds of O^*(1.251^n) by Iwama and Nakashima and O^*(1.260^n) by Eppstein. Our algorithm is a simple branch-and-search algorithm. The only branch rule is designed on a cut-circuit structure of a graph induced by unprocessed edges. To improve a time bound by a simple analysis on measure and conquer, we introduce an amortization scheme over the cut-circuit structure by defining the measure of an instance to be the sum of not only weights of vertices but also weights of connected components of the induced graph.Comment: 24 pages and 4 figure

    Finding 2-Edge and 2-Vertex Strongly Connected Components in Quadratic Time

    Full text link
    We present faster algorithms for computing the 2-edge and 2-vertex strongly connected components of a directed graph, which are straightforward generalizations of strongly connected components. While in undirected graphs the 2-edge and 2-vertex connected components can be found in linear time, in directed graphs only rather simple O(mn)O(m n)-time algorithms were known. We use a hierarchical sparsification technique to obtain algorithms that run in time O(n2)O(n^2). For 2-edge strongly connected components our algorithm gives the first running time improvement in 20 years. Additionally we present an O(m2/logn)O(m^2 / \log{n})-time algorithm for 2-edge strongly connected components, and thus improve over the O(mn)O(m n) running time also when m=O(n)m = O(n). Our approach extends to k-edge and k-vertex strongly connected components for any constant k with a running time of O(n2log2n)O(n^2 \log^2 n) for edges and O(n3)O(n^3) for vertices

    Hierarchies of Predominantly Connected Communities

    Full text link
    We consider communities whose vertices are predominantly connected, i.e., the vertices in each community are stronger connected to other community members of the same community than to vertices outside the community. Flake et al. introduced a hierarchical clustering algorithm that finds such predominantly connected communities of different coarseness depending on an input parameter. We present a simple and efficient method for constructing a clustering hierarchy according to Flake et al. that supersedes the necessity of choosing feasible parameter values and guarantees the completeness of the resulting hierarchy, i.e., the hierarchy contains all clusterings that can be constructed by the original algorithm for any parameter value. However, predominantly connected communities are not organized in a single hierarchy. Thus, we develop a framework that, after precomputing at most 2(n1)2(n-1) maximum flows, admits a linear time construction of a clustering \C(S) of predominantly connected communities that contains a given community SS and is maximum in the sense that any further clustering of predominantly connected communities that also contains SS is hierarchically nested in \C(S). We further generalize this construction yielding a clustering with similar properties for kk given communities in O(kn)O(kn) time. This admits the analysis of a network's structure with respect to various communities in different hierarchies.Comment: to appear (WADS 2013

    Cubic Augmentation of Planar Graphs

    Full text link
    In this paper we study the problem of augmenting a planar graph such that it becomes 3-regular and remains planar. We show that it is NP-hard to decide whether such an augmentation exists. On the other hand, we give an efficient algorithm for the variant of the problem where the input graph has a fixed planar (topological) embedding that has to be preserved by the augmentation. We further generalize this algorithm to test efficiently whether a 3-regular planar augmentation exists that additionally makes the input graph connected or biconnected. If the input graph should become even triconnected, we show that the existence of a 3-regular planar augmentation is again NP-hard to decide.Comment: accepted at ISAAC 201

    Distributed Minimum Cut Approximation

    Full text link
    We study the problem of computing approximate minimum edge cuts by distributed algorithms. We use a standard synchronous message passing model where in each round, O(logn)O(\log n) bits can be transmitted over each edge (a.k.a. the CONGEST model). We present a distributed algorithm that, for any weighted graph and any ϵ(0,1)\epsilon \in (0, 1), with high probability finds a cut of size at most O(ϵ1λ)O(\epsilon^{-1}\lambda) in O(D)+O~(n1/2+ϵ)O(D) + \tilde{O}(n^{1/2 + \epsilon}) rounds, where λ\lambda is the size of the minimum cut. This algorithm is based on a simple approach for analyzing random edge sampling, which we call the random layering technique. In addition, we also present another distributed algorithm, which is based on a centralized algorithm due to Matula [SODA '93], that with high probability computes a cut of size at most (2+ϵ)λ(2+\epsilon)\lambda in O~((D+n)/ϵ5)\tilde{O}((D+\sqrt{n})/\epsilon^5) rounds for any ϵ>0\epsilon>0. The time complexities of both of these algorithms almost match the Ω~(D+n)\tilde{\Omega}(D + \sqrt{n}) lower bound of Das Sarma et al. [STOC '11], thus leading to an answer to an open question raised by Elkin [SIGACT-News '04] and Das Sarma et al. [STOC '11]. Furthermore, we also strengthen the lower bound of Das Sarma et al. by extending it to unweighted graphs. We show that the same lower bound also holds for unweighted multigraphs (or equivalently for weighted graphs in which O(wlogn)O(w\log n) bits can be transmitted in each round over an edge of weight ww), even if the diameter is D=O(logn)D=O(\log n). For unweighted simple graphs, we show that even for networks of diameter O~(1λnαλ)\tilde{O}(\frac{1}{\lambda}\cdot \sqrt{\frac{n}{\alpha\lambda}}), finding an α\alpha-approximate minimum cut in networks of edge connectivity λ\lambda or computing an α\alpha-approximation of the edge connectivity requires Ω~(D+nαλ)\tilde{\Omega}(D + \sqrt{\frac{n}{\alpha\lambda}}) rounds

    Almost-Tight Distributed Minimum Cut Algorithms

    Full text link
    We study the problem of computing the minimum cut in a weighted distributed message-passing networks (the CONGEST model). Let λ\lambda be the minimum cut, nn be the number of nodes in the network, and DD be the network diameter. Our algorithm can compute λ\lambda exactly in O((nlogn+D)λ4log2n)O((\sqrt{n} \log^{*} n+D)\lambda^4 \log^2 n) time. To the best of our knowledge, this is the first paper that explicitly studies computing the exact minimum cut in the distributed setting. Previously, non-trivial sublinear time algorithms for this problem are known only for unweighted graphs when λ3\lambda\leq 3 due to Pritchard and Thurimella's O(D)O(D)-time and O(D+n1/2logn)O(D+n^{1/2}\log^* n)-time algorithms for computing 22-edge-connected and 33-edge-connected components. By using the edge sampling technique of Karger's, we can convert this algorithm into a (1+ϵ)(1+\epsilon)-approximation O((nlogn+D)ϵ5log3n)O((\sqrt{n}\log^{*} n+D)\epsilon^{-5}\log^3 n)-time algorithm for any ϵ>0\epsilon>0. This improves over the previous (2+ϵ)(2+\epsilon)-approximation O((nlogn+D)ϵ5log2nloglogn)O((\sqrt{n}\log^{*} n+D)\epsilon^{-5}\log^2 n\log\log n)-time algorithm and O(ϵ1)O(\epsilon^{-1})-approximation O(D+n12+ϵpolylogn)O(D+n^{\frac{1}{2}+\epsilon} \mathrm{poly}\log n)-time algorithm of Ghaffari and Kuhn. Due to the lower bound of Ω(D+n1/2/logn)\Omega(D+n^{1/2}/\log n) by Das Sarma et al. which holds for any approximation algorithm, this running time is tight up to a polylogn \mathrm{poly}\log n factor. To get the stated running time, we developed an approximation algorithm which combines the ideas of Thorup's algorithm and Matula's contraction algorithm. It saves an ϵ9log7n\epsilon^{-9}\log^{7} n factor as compared to applying Thorup's tree packing theorem directly. Then, we combine Kutten and Peleg's tree partitioning algorithm and Karger's dynamic programming to achieve an efficient distributed algorithm that finds the minimum cut when we are given a spanning tree that crosses the minimum cut exactly once

    On the Maximum Crossing Number

    Full text link
    Research about crossings is typically about minimization. In this paper, we consider \emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.Comment: 16 pages, 5 figure

    A New Integer Linear Programming Formulation to the Inverse QSAR/QSPR for Acyclic Chemical Compounds Using Skeleton Trees

    Get PDF
    33rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2020, Kitakyushu, Japan, September 22-25, 2020.Computer-aided drug design is one of important application areas of intelligent systems. Recently a novel method has been proposed for inverse QSAR/QSPR using both artificial neural networks (ANN) and mixed integer linear programming (MILP), where inverse QSAR/QSPR is a major approach for drug design. This method consists of two phases: In the first phase, a feature function f is defined so that each chemical compound G is converted into a vector f(G) of several descriptors of G, and a prediction function ψ is constructed with an ANN so that ψ(f(G)) takes a value nearly equal to a given chemical property π for many chemical compounds G in a data set. In the second phase, given a target value y∗ of the chemical property π , a chemical structure G∗ is inferred in the following way. An MILP M is formulated so that M admits a feasible solution (x∗, y∗) if and only if there exist vectors x∗, y∗ and a chemical compound G∗ such that ψ(x∗)=y∗ and f(G∗)=x∗. The method has been implemented for inferring acyclic chemical compounds. In this paper, we propose a new MILP for inferring acyclic chemical compounds by introducing a novel concept, skeleton tree, and conducted computational experiments. The results suggest that the proposed method outperforms the existing method when the diameter of graphs is up to around 6 to 8. For an instance for inferring acyclic chemical compounds with 38 non-hydrogen atoms from C, O and S and diameter 6, our method was 5×104 times faster
    corecore