157 research outputs found

    Evaluation of Cell Cycle Arrest in Estrogen Responsive MCF-7 Breast Cancer Cells: Pitfalls of the MTS Assay

    Get PDF
    Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of viable cells; or fluorescence SYBR®Green (SYBR) DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay; assessment of newly synthesized DNA using 5-ethynyl-2′-deoxyuridine (EdU) nucleoside analog binding and Alexa Fluor® azide visualization by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780 (Faslodex), FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI 182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle progression, the cells are still viable and potential treatments utilizing these pathways may contribute to drug resistant cells. These experiments demonstrate how the combined measurement of metabolic activity and DNA labeling provides a more reliable interpretation of cancer cell response to treatment regimens

    The effects of ethanol and silymarin treatment during gestation on spatial working memory.

    Get PDF
    BACKGROUND: Using a rat model we have found that the bioflavonoid silymarin (SY) ameliorates some of the negative consequences of in utero exposure to ethanol (EtOH). In the current study our aim was to determine if spatial working memory (SWM) was impaired in offspring whose mothers were maintained on a liquid diet containing EtOH during different gestational weeks. We also determined if SWM was altered with a concomitant administration of SY with EtOH during specific gestational weeks. METHODS: We provided pregnant Fischer/344 rats with liquid diets containing 35% EtOH derived calories (EDC) during specific weeks of the gestational period. A silymarin/phospholipid compound containing 29.8% silybin co-administered with EtOH was also administered during specific weeks of the gestational period. We tested SWM of the offspring with a radial arm maze on postnatal day (PND) 60. After testing the rats were sacrificed and their brains perfused for later analysis. RESULTS: We observed SWM deficits, as well as a significantly lower brain weight in female offspring born of mothers treated with EtOH during the third week of gestation in comparison to mothers treated during either the first or second weeks of gestation. Rats from any group receiving EtOH in co-administration with SY showed no significant deficits in SWM. CONCLUSION: EtOH treatment during the last week of gestation had the greatest impact on SWM. The addition of SY to the EtOH liquid diet appeared to ameliorate the EtOH-induced learning deficits

    Anatomical classification of the shape and topography of the stomach

    Get PDF
    The aim of the study was to present the classification of anatomical variations of the stomach, based on the radiological and historical data. In years 2006–2010, 2,034 examinations of the upper digestive tract were performed. Normal stomach anatomy or different variations of the organ shape and/or topography without any organic radiologically detectable gastric lesions were revealed in 568 and 821 cases, respectively. Five primary groups were established: abnormal position along longitudinal (I) and horizontal axis (II), as well as abnormal shape (III) and stomach connections (IV) or mixed forms (V). The first group contains abnormalities most commonly observed among examined patients such as stomach rotation and translocation to the chest cavity, including sliding, paraesophageal, mixed-form and upside-down hiatal diaphragmatic hernias, as well as short esophagus, and the other diaphragmatic hernias, that were not found in the evaluated population. The second group includes the stomach cascade. The third and fourth groups comprise developmental variations and organ malformations that were not observed in evaluated patients. The last group (V) encloses mixed forms that connect two or more previous variations

    Deletion of the BDNF Truncated Receptor TrkB.T1 Delays Disease Onset in a Mouse Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Brain Derived Neurotrophic Factor (BDNF) exerts strong pro-survival effects on developing and injured motoneurons. However, in clinical trials, BDNF has failed to benefit patients with amyotrophic lateral sclerosis (ALS). To date, the cause of this failure remains unclear. Motoneurons express the TrkB kinase receptor but also high levels of the truncated TrkB.T1 receptor isoform. Thus, we investigated whether the presence of this receptor may affect the response of diseased motoneurons to endogenous BDNF. We deleted TrkB.T1 in the hSOD1G93A ALS mouse model and evaluated the impact of this mutation on motoneuron death, muscle weakness and disease progression. We found that TrkB.T1 deletion significantly slowed the onset of motor neuron degeneration. Moreover, it delayed the development of muscle weakness by 33 days. Although the life span of the animals was not affected we observed an overall improvement in the neurological score at the late stage of the disease. To investigate the effectiveness of strategies aimed at bypassing the TrkB.T1 limit to BDNF signaling we treated SOD1 mutant mice with the adenosine A2A receptor agonist CGS21680, which can activate motoneuron TrkB receptor signaling independent of neurotrophins. We found that CGS21680 treatment slowed the onset of motor neuron degeneration and muscle weakness similarly to TrkB.T1 removal. Together, our data provide evidence that endogenous TrkB.T1 limits motoneuron responsiveness to BDNF in vivo and suggest that new strategies such as Trk receptor transactivation may be used for therapeutic intervention in ALS or other neurodegenerative disorders

    Serum brain-derived neurotrophic factor: Determinants and relationship with depressive symptoms in a community population of middle-aged and elderly people

    Get PDF
    OBJECTIVES: Brain-derived neurotrophic factor (BDNF) is involved in major depressive disorder and neurodegenerative diseases. Clinical studies, showing decreased serum BDNF levels, are difficult to interpret due to limited knowledge of potential confounders and mixed results for age and sex effects. We explored potential determinants of serum BDNF levels in a community sample of 1230 subjects. METHODS: Multiple linear regression analyses with serum BDNF level as the dependent variable were conducted to explore the effect of four categories of potential BDNF determinants (sampling characteristics, sociodemographic variables, lifestyle factors and somatic diseases) and of self-reported depressive symptoms (Beck's Depression Inventory (BDI). RESULTS: Our results show that BDNF levels decline with age in women, whereas in men levels remain stable. Moreover, after controlling for age and gender, the assays still showed lower serum BDNF levels with higher BDI sum scores. Effects remained significant after correction for two main confounders (time of sampling and smoking), suggesting that they serve as molecular trait factors independent of lifestyle factors. CONCLUSIONS: Given the age-sex interaction on serum BDNF levels and the known association between BDNF and gonadal hormones, research is warranted to delineate the effects of the latter interaction on the risk of psychiatric and neurodegenerative diseases

    BDNF polymorphism predicts the rate of decline in skilled task performance and hippocampal volume in healthy individuals

    Get PDF
    Numerous studies have indicated a link between the presence of polymorphism in brain-derived neurotrophic factor (BDNF) and cognitive and affective disorders. However, only a few have studied these effects longitudinally along with structural changes in the brain. This study was carried out to investigate whether valine-to-methionine substitution at position 66 (val66met) of pro-BDNF could be linked to alterations in the rate of decline in skilled task performance and structural changes in hippocampal volume. Participants consisted of 144 healthy Caucasian pilots (aged 40–69 years) who completed a minimum of 3 consecutive annual visits. Standardized flight simulator score (SFSS) was measured as a reliable and quantifiable indicator for skilled task performance. In addition, a subset of these individuals was assessed for hippocampal volume alterations using magnetic resonance imaging. We found that val66met substitution in BDNF correlated longitudinally with the rate of decline in SFSS. Structurally, age-dependent hippocampal volume changes were also significantly altered by this substitution. Our study suggests that val66met polymorphism in BDNF can be linked to the rate of decline in skilled task performance. Furthermore, this polymorphism could be used as a predictor of the effects of age on the structure of the hippocampus in healthy individuals. Such results have implications for understanding possible disabilities in older adults performing skilled tasks who are at a higher risk for cognitive and affective disorders

    Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Globally, gastric cancer is the second most common cause of cancer-related death, with the majority of the health burden borne by economically less-developed countries.</p> <p>Methods</p> <p>Here, we report a genetic characterization of 50 gastric adenocarcinoma samples, using affymetrix SNP arrays and Illumina mRNA expression arrays as well as Illumina sequencing of the coding regions of 384 genes belonging to various pathways known to be altered in other cancers.</p> <p>Results</p> <p>Genetic alterations were observed in the WNT, Hedgehog, cell cycle, DNA damage and epithelial-to-mesenchymal-transition pathways.</p> <p>Conclusions</p> <p>The data suggests targeted therapies approved or in clinical development for gastric carcinoma would be of benefit to ~22% of the patients studied. In addition, the novel mutations detected here, are likely to influence clinical response and suggest new targets for drug discovery.</p
    corecore