1,479 research outputs found

    On the absence of conduction electrons in the antiferromagnetic part of the phase-separated states in magnetic semiconductors

    Full text link
    We have calculated the energies of the phase-separated states for degenerate antiferromagnetic semiconductors including the possibility of the existence of conduction electrons in the antiferromagnetic part of the phase-separated states. It is demonstrated that, at T=0, the minimum energy corresponds to a droplet phase with absence of electrons in the antiferromagnetic part.Comment: 13 pages, 4 figure

    Large nonzero-moment magnetic strings in antiferromagnetic crystals of the manganite type

    Full text link
    The magnetic strings in antiferromagnetic crystals with the spin S=1/2S = 1 /2 differ from the magnetic polarons (ferrons) by the absence of the additional magnetic moment. We show that in the S>1/2S > 1 /2 double exchange crystals with the antiferromagnetic sds-d exchange, a new type of magnetic strings appears, which possesses a magnetic moment. It is concentrated at the center of the string, and the magnetized string is, in its essence, the state intermediate between the string and the ferron. In antiferromagnetic manganites, this moment is by an order of magnitude larger than that of a magnetic atom. Unlike the conventional ferrons, the magnetization of the strings exists at any parameters of the crystals under consideration. We argue that this new type of magnetic state can be relevant to some doped antiferromagnets including manganites.Comment: 7 pages, 1 eps figure, RevTeX, submitted to Phys. Rev.

    Edgeworth expansions in operator form

    Full text link
    An operator form of asymptotic expansions for Markov chains is established. Coefficients are given explicitly. Such expansions require a certain modification of the classical spectral method. They prove to be extremely useful within the context of large deviations.Comment: 12 page

    Phase diagram as a function of temperature and magnetic field for magnetic semiconductors

    Full text link
    Using an extension of the Nagaev model of phase separation (E.L. Nagaev, and A.I. Podel'shchikov, Sov. Phys. JETP, 71 (1990) 1108), we calculate the phase diagram for degenerate antiferromagnetic semiconductors in the T-H plane for different current carrier densities. Both, wide-band semiconductors and 'double-exchange' materials, are investigated.Comment: 5 pages, 6 figures, RevTex, Accepted for publication in PR

    Stabilization of magnetic polarons in antiferromagnetic semiconductors by extended spin distortions

    Full text link
    We study the problem of a magnetic polaron in an antiferromagnetic semiconductor (ferron). We obtain an analytical solution for the distortion produced in the magnetic structure of the d-spins due to the presence of a charge carrier bound to an impurity. The region in which the charge carrier is trapped is of the order of the lattice constant (small ferron) but the distortion of the magnetic structure extends over much larger distance. It is shown that the presence of this distortion makes the ferron more stable, and introduces a new length scale in the problem.Comment: 5 pages, 1 figure, RevTex 4, submitted to PRB; v2: one reference added, minor changes in the experiment discussion; v3: minor changes in tex
    corecore