4 research outputs found

    The role of historical fire disturbance in the carbon dynamics of the pan-boreal region : a process-based analysis

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G02029, doi:10.1029/2006JG000380.Wildfire is a common occurrence in ecosystems of northern high latitudes, and changes in the fire regime of this region have consequences for carbon feedbacks to the climate system. To improve our understanding of how wildfire influences carbon dynamics of this region, we used the process-based Terrestrial Ecosystem Model to simulate fire emissions and changes in carbon storage north of 45°N from the start of spatially explicit historically recorded fire records in the twentieth century through 2002, and evaluated the role of fire in the carbon dynamics of the region within the context of ecosystem responses to changes in atmospheric CO2 concentration and climate. Our analysis indicates that fire plays an important role in interannual and decadal scale variation of source/sink relationships of northern terrestrial ecosystems and also suggests that atmospheric CO2 may be important to consider in addition to changes in climate and fire disturbance. There are substantial uncertainties in the effects of fire on carbon storage in our simulations. These uncertainties are associated with sparse fire data for northern Eurasia, uncertainty in estimating carbon consumption, and difficulty in verifying assumptions about the representation of fires that occurred prior to the start of the historical fire record. To improve the ability to better predict how fire will influence carbon storage of this region in the future, new analyses of the retrospective role of fire in the carbon dynamics of northern high latitudes should address these uncertainties.Funding for this study was provided by grants from the National Science Foundation Biocomplexity Program (ATM-0120468) and Office of Polar Programs (OPP-0531047 and OPP- 0327664); the National Aeronautics and Space Administration Land Cover Land Use Change Program (NAF-11142) and North America Carbon Program (NNG05GD25G); the Bonanza Creek LTER (Long-Term Ecological Research) Program (funded jointly by NSF grant DEB-0423442 and USDA Forest Service, Pacific Northwest Research Station grant PNW01- JV11261952-231); and the U.S. Geological Survey

    Examining Forest Resilience to Changing Fire Frequency in a Fire‐Prone Region of Boreal Forest

    Full text link
    Future changes in climate are widely anticipated to increase fire frequency, particularly in boreal forests where extreme warming is expected to occur. Feedbacks between vegetation and fire may modify the direct effects of warming on fire activity and shape ecological responses to changing fire frequency. We investigate these interactions using extensive field data from the Boreal Shield of Saskatchewan, Canada, a region where \u3e40% of the forest has burned in the past 30 years. We use geospatial and field data to assess the resistance and resilience of eight common vegetation states to frequent fire by quantifying the occurrence of short‐interval fires and their effect on recovery to a similar vegetation state. These empirical relationships are combined with data from published literature to parameterize a spatially explicit, state‐and‐transition simulation model of fire and forest succession. We use this model to ask if and how: (a) feedbacks between vegetation and wildfire may modify fire activity on the landscape, and (b) more frequent fire may affect landscape forest composition and age structure. Both field and GIS data suggest the probability of fire is low in the initial decades after fire, supporting the hypothesis that fuel accumulation may exert a negative feedback on fire frequency. Field observations of pre‐ and postfire composition indicate that switches in forest state are more likely in conifer stands that burn at a young age, supporting the hypothesis that resilience is lower in immature stands. Stands dominated by deciduous trees or jack pine were generally resilient to fire, while mixed conifer and well‐drained spruce forests were less resilient. However, simulation modeling suggests increased fire activity may result in large changes in forest age structure and composition, despite the feedbacks between vegetation–fire likely to occur with increased fire activity
    corecore