3 research outputs found

    Studying the effect of formic acid and potassium diformate on performance, immunity and gut health of broiler chickens

    Full text link
    Our trial was conducted to study the effects of formic acid (FA) and potassium di-formate (KDF) in broiler ration on performance, carcass traits, blood biochemical, intestinal microbial load, histological picture of intestine and immune parameters of broilers. In this study 360 one-day-old broiler chicks were divided to 3 groups with 3 replicates of 40 chicks each. The trial continued for 35 days. The control group was fed only basal diet (G1). Group 2 (G2) were fed basal diet supplemented with FA (5 g/kg diet), and group 3 (G3) received basal diet supplemented with KDF (5 g/kg diet). The results showed that both FA and KDF significantly increased body weight gain (BWG), dressing percentage of broilers and significantly decreased feed conversion ratio (FCR) (P < 0.05). The highest percent of breast and thigh was observed in G3. The improvement in villus height was observed in G2 and G3 compared with the control one, and the highest was in G3. The results evidence that the using of FA or KDF in broiler feeds have significant effects on performance, immune parameters, and gut health without having any significant effects on blood biochemical. However, KDF is more effective than FA as little amount of FA reaches the small intestine due to metabolism and absorption, whereas KDF permits a proportion of FA to pass through the fore-gut intact and enter the small intestinal tract. In addition, FA has a strong odor and corrosiveness to gastrointestinal tract which limits its use

    Efficacy of dietary yeast cell wall supplementation on the nutrition and immune response of Nile tilapia

    Full text link
    Prebiotics are non-digestible carbohydrates that improve the animal health via modulation of their intestinal beneficial organisms. Immunowall® is a commercial prebiotic consists of high concentration of yeast β-glucan (βG) and Mannan-oligosaccharides (MOS). The current study was designed to investigate the prebiotic potential of Immunowall® on nutrition and health performance of Nile tilapia Oreochromis niloticus. Three fish groups were nourished on control diet supplemented with 0%, 0.1% and 0.2% Immunowall® for two months. Both dietary levels of Immunowall® exhibited significant increase in growth parameters (P ≤ 0.05) as well as in white blood cell count, total protein, and globulin concentrations. While, the immune parameters such as antioxidant biomarkers (catalase and glutathione-reductase), non-specific immune response (e.g. phagocytic activity, phagocytic index and lysozyme activity) and immune-related genes expressions (e.g. TNF-α and IL-1β) were higher in 0.2% Immunowall® compared to 0.1% Immunowall® and control. Oral administration of β-glucan and MOS mixture reduced the mortalities after microbial infections with L. gravieae and A. hydrophila. Therefore, we can recommend the dietary inclusion of Immunowall® in aqua-feed as an efficient method to achieve feasible and sustainable fish production. Keywords: β-Glucan, MOS, Immunity, Growth, Challenge, Nile tilapi

    Analysis of the Productivity, Immunity, and Health Performance of Nile Tilapia (Oreochromis niloticus) Broodstock-fed Dietary Fermented Extracts Sourced from Saccharomyces cerevisiae (Hilyses): A Field Trial

    Full text link
    The present study aimed to evaluate the effect of dietary fermented extracts sourced from Saccharomyces cerevisiae (nucleotides, β-glucans and MOS) (Hilyses®) on the production and health of Nile tilapia (Oreochromis niloticus) broodstock, as well as on seed survival and performance. The trial was performed in a hatchery along the spawning season and continued in the laboratory to monitor the performance in fry and fingerlings. The broodstock were divided into two groups, (C) fed a basal diet and (H) fed 0.4% Hilyses. Blood and histological parameters, antioxidant power, cortisol level and the expression of some immune-related (TLR-2, IL-1β and TNF-α) and growth-related genes (MUC-2 and IGF-1) were measured. The obtained seeds were subdivided into four treatments: (C-C) fed a basal diet, (C-H) fed 0.4% Hilyses, (H-C) fed a basal diet and (H-H) fed 0.4% Hilyses. Results revealed that the dietary inclusion of Hilyses in the broodstock increased seed production, survival, hematological parameters, and antioxidant power. Moreover, it improved the intestinal microstructure and upregulated the immune- and growth-related genes. The growth indices of fry and fingerlings were significantly increased in all Hilyses-treated groups (p &lt; 0.05). The performance in the (H-H) group significantly surpassed those of all groups. Therefore, dietary fermented yeast could be used as a strategic solution to sustain tilapia production
    corecore