274 research outputs found

    Zur Loeslichkeit von Plutonium in Wasser

    Get PDF

    Demographischer Wandel: Anforderungen für eine aktive Steuerung

    Full text link

    Ältere Arbeitnehmer zwischen neuem Paradigma und traditionellen betrieblichen Personalpraktiken

    Full text link
    Die demographische Entwicklung in Deutschland ist durch eine Parallelität der unabhängig voneinander stattfindenden Trends charakterisiert, die sich in ihren Wirkungen noch gegenseitig verstärken: niedrige Geburtenrate, Altern der Bevölkerung, exponentialer Anstieg der Zahl sehr alter Menschen. In den letzten Jahren hat in Deutschland ein Umdenken eingesetzt, das nicht nur die Belastung durch Alterungsprozesse, sondern auch die in diesen Prozessen liegenden Potenziale und Ressourcen betont. In diesen Kontext gehören auch die fortgeführte Konsolidierung der Rentenfinanzen durch die "Rente mit 67" und die Furcht vor demographiebedingten Engpässen auf dem Arbeitsmarkt. Der Abschied von der Frühverrentungspraxis zieht jedoch keinen demographischen Automatismus nach sich, der die Arbeitsbedingungen und Beschäftigungsaussichten älterer Arbeitnehmern verbessern würde. Hier müssten folgende Maßnahmen ergriffen werden: Begrenzung des arbeits- und berufsbedingten Erkrankungsrisikos, Begrenzung des höheren Qualifikationsrisikos und Erhöhung der Arbeitsmotivation älterer Arbeitnehmer. (ICE2

    A new solid-phase system for immunoassays

    Get PDF
    The development of a new solid-phase separation system based on silane polymers is described. A T3 radioimmunoassay (RIA) was optimized using coated tubes with polymer coatings containing hydrophilic surface aldehyde groups for antibody coupling and a T4 RIA developed on the basis of surface anilino group containing particles using a suspension method. Both RIAs offer very good performances and show the variable usability of the new separation system

    Magnetic state of plutonium ion in metallic Pu and its compounds

    Full text link
    By LDA+U method with spin-orbit coupling (LDA+U+SO) the magnetic state and electronic structure have been investigated for plutonium in \delta and \alpha phases and for Pu compounds: PuN, PuCoGa5, PuRh2, PuSi2, PuTe, and PuSb. For metallic plutonium in both phases in agreement with experiment a nonmagnetic ground state was found with Pu ions in f^6 configuration with zero values of spin, orbital, and total moments. This result is determined by a strong spin-orbit coupling in 5f shell that gives in LDA calculation a pronounced splitting of 5f states on f^{5/2} and f^{7/2} subbands. A Fermi level is in a pseudogap between them, so that f^{5/2} subshell is already nearly completely filled with six electrons before Coulomb correlation effects were taken into account. The competition between spin-orbit coupling and exchange (Hund) interaction (favoring magnetic ground state) in 5f shell is so delicately balanced, that a small increase (less than 15%) of exchange interaction parameter value from J_H=0.48eV obtained in constrain LDA calculation would result in a magnetic ground state with nonzero spin and orbital moment values. For Pu compounds investigated in the present work, predominantly f^6 configuration with nonzero magnetic moments was found in PuCoGa5, PuSi2, and PuTe, while PuN, PuRh2, and PuSb have f^5 configuration with sizeable magnetic moment values. Whereas pure jj coupling scheme was found to be valid for metallic plutonium, intermediate coupling scheme is needed to describe 5f shell in Pu compounds. The results of our calculations show that both spin-orbit coupling and exchange interaction terms in the Hamiltonian must be treated in a general matrix form for Pu and its compounds.Comment: 20 pages, LaTeX; changed discussion on reference pape

    Long-Term Seizure Suppression and Optogenetic Analyses of Synaptic Connectivity in Epileptic Mice with Hippocampal Grafts of GABAergic Interneurons

    Get PDF
    Studies in rodent epilepsy models suggest that GABAergic interneuron progenitor grafts can reduce hyperexcitability and seizures in temporal lobe epilepsy (TLE). Although integration of the transplanted cells has been proposed as the underlying mechanism for these disease-modifying effects, prior studies have not explicitly examined cell types and synaptic mechanisms for long-term seizure suppression. To address this gap, we transplanted medial ganglionic eminence (MGE) cells from embryonic day 13.5 VGAT-Venus or VGAT-ChR2-EYFP transgenic embryos into the dentate gyrus (DG) of adult mice 2 weeks after induction of TLE with pilocarpine. Beginning 3–4 weeks after status epilepticus, we conducted continuous video-electroencephalographic recording until 90–100 d. TLE mice with bilateral MGE cell grafts in the DG had significantly fewer and milder electrographic seizures, compared with TLE controls. Immunohistochemical studies showed that the transplants contained multiple neuropeptide or calcium-binding protein-expressing interneuron types and these cells established dense terminal arborizations onto the somas, apical dendrites, and axon initial segments of dentate granule cells (GCs). A majority of the synaptic terminals formed by the transplanted cells were apposed to large postsynaptic clusters of gephyrin, indicative of mature inhibitory synaptic complexes. Functionality of these new inhibitory synapses was demonstrated by optogenetically activating VGAT-ChR2-EYFP-expressing transplanted neurons, which generated robust hyperpolarizations in GCs. These findings suggest that fetal GABAergic interneuron grafts may suppress pharmacoresistant seizures by enhancing synaptic inhibition in DG neural circuits

    Absence of system xc⁻ on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis

    Get PDF
    Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls. Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS
    corecore