8 research outputs found
Magnesium treatment for neuroprotection in ischemic diseases of the brain
This article reviews experimental and clinical data on the use of magnesium as a neuroprotective agent in various conditions of cerebral ischemia. Whereas magnesium has shown neuroprotective properties in animal models of global and focal cerebral ischemia, this effect could not be reproduced in a large human stroke trial. These conflicting results may be explained by the timing of treatment. While treatment can be started before or early after ischemia in experimental studies, there is an inevitable delay of treatment in human stroke. Magnesium administration to women at risk for preterm birth has been investigated in several randomized controlled trials and was found to reduce the risk of neurological deficits for the premature infant. Postnatal administration of magnesium to babies after perinatal asphyxia has been studied in a number of controlled clinical trials. The results are promising but the trials have, so far, been underpowered. In aneurysmal subarachnoid hemorrhage (SAH), cerebral ischemia arises with the onset of delayed cerebral vasospasm several days after aneurysm rupture. Similar to perinatal asphyxia in impending preterm delivery, treatment can be started prior to ischemia. The results of clinical trials are conflicting. Several clinical trials did not show an additive effect of magnesium with nimodipine, another calcium antagonist which is routinely administered to SAH patients in many centers. Other trials found a protective effect after magnesium therapy. Thus, it may still be a promising substance in the treatment of secondary cerebral ischemia after aneurysmal SAH. Future prospects of magnesium therapy are discussed
3D rotational fluoroscopy for intraoperative clip control in patients with intracranial aneurysms – assessment of feasibility and image quality
Background
Mobile 3D fluoroscopes have become increasingly available in neurosurgical operating rooms. In this series, the image quality and value of intraoperative 3D fluoroscopy with intravenous contrast agent for the evaluation of aneurysm occlusion and vessel patency after clip placement was assessed in patients who underwent surgery for intracranial aneurysms.
Materials and methods
Twelve patients were included in this retrospective analysis. Prior to surgery, a 360° rotational fluoroscopy scan was performed without contrast agent followed by another scan with 50 ml of intravenous iodine contrast agent. The image files of both scans were transferred to an Apple PowerMac® workstation, subtracted and reconstructed using OsiriX® free software. The procedure was repeated after clip placement. Both image sets were compared for assessment of aneurysm occlusion and vessel patency.
Results
Image acquisition and contrast administration caused no adverse effects. Image quality was sufficient to follow the patency of the vessels distal to the clip. Metal artifacts reduce the assessability of the immediate vicinity of the clip. Precise image subtraction and post-processing can reduce metal artifacts and make the clip-site assessable and depict larger neck-remnants.
Conclusion
This technique quickly supplies images at adequate quality to evaluate distal vessel patency after aneurysm clipping. Significant aneurysm remnants may be depicted as well. As it does not require visual control of all vessels that are supposed to be evaluated intraoperatively, this technique may be complementary to other intraoperative tools like indocyanine green videoangiography and micro-Doppler, especially for the assessment of larger aneurysms. At the momentary state of this technology, it cannot replace postoperative conventional angiography. However, 3D fluoroscopy and image post-processing are young technologies. Further technical developments are likely to result in improved image quality
Photoreceptor proteins as cancer-retina antigens
Melanocytes, melanoma and photoreceptor cells are of neuroectodermal origin and have a certain sensitivity to light. In this study, we present evidence for photoreceptor proteins that are responsible for visual transduction and its regulation function as a new class of cancer antigens in melanoma. Visual rhodopsin, transducin, cGMP-phosphodiesterase 6, cGMP-dependent channels, guanylyl cyclase, rhodopsin kinase, recoverin and arrestin are expressed in melanoma and can induce antibody responses in patients. Melanocytes also express mRNA of all photoreceptor genes besides transducin, but were devoid of the corresponding protein, which was tested for rhodopsin, cGMP-phosphodiesterase, guanylyl cyclase and recoverin. Furthermore, we show for the first time that some healthy tissues express mRNA of these genes, but never protein. Expression profiles and autoantibody responses were confirmed in the MT/ret and the HGF tg/Ink4a -/- transgenic mouse melanoma models. We propose a molecular transition of cancer-retina antigens from mRNA expression in melanocytes to protein expression in melanoma. Our work provides the basis for analyzing regulation of photoreceptor gene expression in normal and malignant cells as well as possible therapeutic tumor targeting using the newly defined class of cancer-retina antigens