939 research outputs found
Front dynamics and entrainment of finite circular gravity currents on an unbounded uniform slope
We report on the dynamics of circular finite-release Boussinesq gravity currents on a uniform slope. The study comprises a series of highly resolved direct numerical simulations for a range of slope angles between 5∘ and 20∘ . The simulations were fixed at Reynolds number Re=5000 for all slopes considered. The temporal evolution of the front is compared to available experimental data. One of the interesting aspects of this study is the detection of a converging flow towards the centre of the gravity current. This converging flow is a result of the finite volume of the release coupled with the presence of a sloping boundary, which results in a second acceleration phase in the front velocity of the current. The details of the dynamics of this second acceleration and the redistribution of material in the current leading to its development will be discussed. These finite-release currents are invariably dominated by the head where most of the mixing and ambient entrainment occurs. We propose a simple method for defining the head of the current from which we extract various properties including the front Froude number and entrainment coefficient. The Froude number is seen to increase with steeper slopes, whereas the entrainment coefficient is observed to be weakly dependent on the bottom slope
Symmetry Breaking in Jetting
In the bubble-jet printing process, it has been observed that the drop that ultimately pinches off from the ink jet sometimes moves sideways rather than straight relative to the symmetry axis of the liquid jet.
We examined various mechanisms that might lead to the deflection of the ink drop. In particular, we focused on whether the liquid filament that connects the lead drop to the nozzle is capable of supporting lateral waves which might propagate from the nozzle toward the lead drop and break the symmetry at pinch-off
General Report —Session IV: Dynamic Earth Pressures and Seismic Design of Earth Retaining Structures
Recommended from our members
The <i>Legionella pneumophila</i> Effector VipA Is an Actin Nucleator That Alters Host Cell Organelle Trafficking
Legionella pneumophila, the causative agent of Legionnaires' disease, invades and replicates within macrophages and protozoan cells inside a vacuole. The type IVB Icm/Dot secretion system is necessary for the translocation of effector proteins that modulate vesicle trafficking pathways in the host cell, thus avoiding phagosome-lysosome fusion. The Legionella VipA effector was previously identified by its ability to interfere with organelle trafficking in the Multivesicular Body (MVB) pathway when ectopically expressed in yeast. In this study, we show that VipA binds actin in vitro and directly polymerizes microfilaments without the requirement of additional proteins, displaying properties distinct from other bacterial actin nucleators. Microscopy studies revealed that fluorescently tagged VipA variants localize to puncta in eukaryotic cells. In yeast these puncta are associated with actin-rich regions and components of the Multivesicular Body pathway such as endosomes and the MVB-associated protein Bro1. During macrophage infection, native translocated VipA associated with actin patches and early endosomes. When ectopically expressed in mammalian cells, VipA-GFP displayed a similar distribution ruling out the requirement of additional effectors for binding to its eukaryotic targets. Interestingly, a mutant form of VipA, VipA-1, that does not interfere with organelle trafficking is also defective in actin binding as well as association with early endosomes and shows a homogeneous cytosolic localization. These results show that the ability of VipA to bind actin is related to its association with a specific subcellular location as well as its role in modulating organelle trafficking pathways. VipA constitutes a novel type of actin nucleator that may contribute to the intracellular lifestyle of Legionella by altering cytoskeleton dynamics to target host cell pathways.</p
Case Report: An Undiagnosed Bladder Diverticulum Resulting in Foley Catheter Perforation During Cesarean Section
A bladder diverticulum is diagnosed when herniated bladder mucosa forms an outpouching from the bladder. Bladder diverticula are uncommon and are significantly more common in males. The following case presents a patient with an undiagnosed bladder diverticulum which was incidentally perforated during foley catheter placement for a repeat cesarean section. The diagnosis can be difficult in those who are asymptomatic and lack risk factors, such as the following patient
Front dynamics of elliptical gravity currents on a uniform slope
In the present investigation, we report data from direct numerical simulations of elliptical, finite release, Boussinesq gravity currents propagating down a uniform slope. The study comprises a series of simulations of elliptical gravity currents on a range of slope angles. The shape parameters are varied to study the effects of the initial cross-sectional aspect ratio (Λ0) and mean height to lock radius ratio (Γ) on the dynamics of the gravity current. It is found that the long-time development of the current spatial mass distribution is influenced by its initial shape at smaller slope angles (θ=5∘ and 10∘) whereas the long-time motion of the gravity current is relatively insensitive to its initial shape but is sensitive to the slope angle. The switching of axes are observed for all the noncircular releases studied in the present work. Multiple acceleration phases are observed for the current center of mass in the case of the current with a small or moderate initial cross-sectional aspect ratio (Λ0=0.1, 0.2, 0.5, 1, and 2) whereas one single acceleration phase exists for the current with a large initial cross-sectional aspect ratio (Λ0=5 and 10). The Froude numbers (Fr) for the currents released with the same slope angle but different initial shapes are observed to attain a similar constant value after the second acceleration phase. The mean Froude number (¯¯¯Fr) is seen to increase with increasing slope angles. The mean height to lock radius ratio is found to affect only the early development of the current with little influence on the long-time evolution
A physics-based model for frost buildup under turbulent flow using direct numerical simulations
We present a new model for frost buildup under turbulent (and laminar) flow using direct numerical simulations. The physical model consists of two layers, the air and the frost. The air layer is fully resolved and consists of solving for the velocity, temperature, and vapor mass fraction fields. The frost layer thickness is resolved using conservation of mass and energy. Both phases are dynamically coupled using the immersed boundary method. Three-dimensional simulations are conducted in an open-channel configuration. A number of challenges need to be overcome to make these simulations feasible. First, to enforce far-field conditions of zero gradient and prescribed mean temperature and humidity, a source term is added to the energy and transport equations in the flow solver. Second, the mean frost thickness is subtracted after each time step to ensure a constant mean flow thickness and level of turbulence in the numerical domain. Third, a slow-time acceleration approach, which accelerates the frost buildup by a predetermined factor, is employed to bridge the gap between the fast turbulent and slow frost buildup time scales. Finally, a frost densification scheme is used to overcome the difficulties of vertically varying frost properties. The model is validated by comparing the frost thickness and frost thickness buildup rate over a period of one hour from a cooled flat plate experiment. Both quantities compare favorably with experiments
Jennifer A Wargo, Nadim J Ajami, and Carrie R Daniel-MacDougall
Dr. Jennifer A. Wargo, Dr. Nadim J. Ajami, and Dr. Carrie R. Daniel-MacDougall describe their academic and clinical work on the role of the microbiome to determine response to immunotherapies and discuss current challenges and potential needs to integrate their findings into clinical practice
- …